今天给各位分享ylg是谁发明的的知识,其中也会对进行解释,如果未能解决您的问答,可在评论区留言!
文章目录:
- 1、磁性材料名词解释
- 2、从自旋角度出发,什么材料具有磁性
- 3、炫神ylg是什么意思
- 4、孔明灯的制作
磁性材料名词解释
篇一:磁性材料名词解释
磁性材料
Jump to: , 磁性材料
magnetic material
可由磁场感生或改变磁化强度的物质。按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。
磁性材料的用途广泛。主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。
简史 中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方 法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。 20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。50年代初,随着电子计算机的发 展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。后来又出现了强压磁性的稀土
1 / 17
合金。非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。
分类 磁性材料按磁性功能分,有永磁、软磁,矩磁、旋磁和压磁材料;按化学成分分,有金属磁和铁氧体;按结构分,有单晶、多晶和非晶磁体;按形态分,有磁性薄膜、塑性磁体、磁性液体和磁性块体。磁性材料通常是按功能分类的。
永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即抗退磁能力)强,磁能积(BH)max (即给空间提供的磁场能量)大。相对于软磁材料而言,它亦称为硬磁材料。
永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AlNi(Co)、 FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、 FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类: 主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。
永磁材料有多种用途。①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。
根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。
软磁材料 它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。 软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAl、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧
体:包括尖晶石型──M++ O·Fe (M++
2O3 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。
软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。
矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。
旋磁材料 具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常 用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧
体器件)。常用的材料已形成系列,有Ni系、Mg系、Li系、YlG系和BiCaV系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的 结构和形态。
压磁材料 这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。常用于超声波发生器的振动头、通信机的机械 滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合 金;在小信号下使用则多用Ni系和NiCo系铁
2 / 17
氧体。非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。压磁材料的生产和应用远不及前面四种材 料。 展望 磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。磁性半导体材料和磁敏材料和器件可 以应用于遥感、遥则技术和机器人。人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。磁性液体已进入实用阶段。某些新的物理和化学效应的发现(如 拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。 参考书目
戴礼智编著:《金属磁性材料》,上海人民出版社,上海, 1973。周志刚等编著:《铁氧体磁性材料》,科学出版社,北京,1981。
李荫远、李国栋编著:《铁氧体物理学》第二版,科学出版社,北京,1983。
具有铁磁性能的材料。电工技术中常用的磁性材料可分为高磁导率、低矫顽力、低剩磁的软磁材料和高矫顽力、高剩磁的永磁材料两大类。永磁材料又称硬磁材料。
磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和 亚铁磁性物质为强磁性物质,其他均为弱磁性物质。
磁性材料有各向同性和各向异
性之分。各向异性材料的磁性能依方向不同而异。因此,在使用各向异性材料时, 必须注意其磁性能的方向。电工领域中常用的磁性材料都属于强磁性物质。反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 磁化曲线和磁滞回线 反映磁性材料磁化特性的曲线。可以用于确定磁性材料的一些基本特性参量如磁导率μ、饱和磁通密度Bs、剩余磁场强度即矫顽力Hc、剩余磁通密度即剩磁Br,以及磁滞损耗P等。 基本磁化曲线是铁磁物质以磁中性状态为出发点,在反复磁化过程中B 随H 变化规律的曲线,简称磁化曲线(图1)。它是确定软磁材料工作点的依据。B 和H 的关系如下: B=μ0(H+M )
式中μ0为真空磁导率(又称磁常数),在国际单位制(SI)中,其值为
μ=4π×10-7
0亨/米;H为磁场强度,单位为安/米(A/m);M 为磁化强度,单位为安/米(A/m)。图中磁化到饱和时的B值称为饱和磁通密度Bs,相应的磁场强度为 Hs。通常,要求磁性材料有高的Bs值。
磁化曲线上任一点的B 与H 之比就是磁导率μ,即对于各向同性的导磁
物质μ=B/H, 常用的是相对磁导率μr
=μ/μ0,它是无量纲的纯数,用以表
示物质的磁化能力。因此,按μr的大小,把各类物质划分为:μr
1的抗磁性
物质,μr1的顺磁性物质,μr
1的强磁性物质。根据B-H 曲线可以描绘出μ-H
3 / 17
曲线,图中μm和μi分别称为最大磁导率和初始磁导率。μi是在低磁场下使用软磁材料的一个重要参量。
图2表示外磁场H 变化一周时B 随H变化而形成的闭合曲线。
由于B 的变化滞后于H,这个现象称为磁滞。闭合曲线称为磁滞回线。图中可见,当Hs降为零时,B 并不回到零,而仅到b点,此值(Br)称为剩余磁通密度,简称剩磁。若要使Br降到零,需加一反磁场,这个反磁场强度的绝对值称为
磁感应矫顽力,简称矫顽力Hrr
c。B与Bs之比称为剩磁比或称开关矩形比(B/Bs),它表征矩磁材料磁滞回线接近矩形的程度。磁滞回线的形状和面积直接表征磁性材料的主要磁特性。
软磁材料的磁滞回线窄,故矫顽力低,磁滞损耗也低(图3a),常用于电机、变压器、继电器的铁心磁路。若磁滞回线窄而接近于矩形(称为矩磁材
料)(图3c),则这种软磁材料不仅矫顽力低而且Br
/Bs值也高,适宜作记忆元件
和开关元件。永磁材料其磁滞回线面积宽大(图3b),Br
和Hc都大,经饱和磁化后,储存的磁场能量大。常用作发电机、电动机的永磁磁极和测量仪表、扬声器中的永磁体等。
磁损耗 单位重量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗或铁损耗P。 它主要由磁滞损耗和涡流损耗引起。其中由磁滞现象引起的能量损耗称为磁滞损耗,它与磁滞回线所包围的面积成正比。磁滞损耗功率Ph可由下式计算Ph=кhBmnV
式中为频率(Hz);Bm为最大磁通密度(T);指数 n为经验参数,和Bm大小有关;V为磁性材料的体积;кh为与铁磁物质性质有关的系数。在交变磁场中导电物质(包括铁磁物质)将感应出涡流,由涡流产生的电阻损耗称为涡流损耗。涡流损耗的功率Pe可由下式计算 P2
e=кeBmnV
式中кe为与材料的电阻率、截面大小、形状有关的系数。Ph和Pe是衡量电工设备、仪表产品质量好坏的重要参数。
具有强磁性的材料。这类材料微观特征是相邻原子或离子磁矩呈有序排列,从而显示出铁磁性或亚铁磁性。宏观特征是在外磁场作用下具有明显的磁化强度。4 / 17
按化学成分分类 基本上可分为金属磁性材料与铁氧体两大类。 ①金属磁性材料。主要是铁、镍、钴元素及其合金,如铁硅合金、铁镍合金、铁钴合金、钐钴合金、铂钴合金、锰铝合金等等。它们具有金属的导电性能,通常呈现铁磁性,具有较高的饱和磁化强度,较高的居里温度,较低的温度系数,在交变电磁场中具有较大的涡流损耗与趋肤效应, 因此金属软磁材料通常适用于低频、大功率的电力、电子工业。例如硅钢片的饱和磁感应强度约为2T(特斯拉),比一般铁氧体大5倍,广泛用作电力变压器。金 属永磁材料目前磁能积很高,用它可以制成体积小,重量轻的永磁器件,尤宜用于宇航等空间科技领域,其缺点是镍、钴以及稀土金属价格贵,材料来源少。 ②铁氧体。是指以氧化铁为主要成分的磁性氧化物,早期曾译名为“铁淦氧磁物“,简称“铁淦氧”,因其制备工艺沿袭了陶瓷和粉末冶金的工艺,有时也称为磁性瓷。大多数为亚铁磁性,从而饱和磁化强度较低,其电阻率却比
金属磁性材料高106
倍以上,在交变电磁场中损耗较低,在高频、微波、光频段应用时更显出其独特的优点,从晶体结构考虑,铁氧体主要分为:尖晶石型(与天然MgAl2O4尖晶石同晶型),例如锰锌铁氧体、镍锌铁氧体等;石榴石型〔与天然的(Fe,Mn)3Al2(SiO4)3石榴石同晶型〕,例如钇铁石榴石型铁氧体(Y3Fe5O12))等;六角晶系铁氧体,例如与天然Pb(Fe7.5)Mn3.5Al0.5Ti0.5)O19磁铅石同晶型的钡
铁氧体(BaFe)O2+
1219),易磁化轴处于六角平面内的Y型铁氧体(Ba2MeFe12)O22)等。 按应用情况分类 大体上可分为 6类(由于磁性材料的种类繁多,应用广泛,实际上决非此6类所能完全概括)。
①永磁材料又名硬磁材料。具有高矫顽力与剩磁值。通常以最大磁能积(BH)m衡量永磁材料的优值。例如:铝镍钴系合金、钐钴系合金、锰铝系合金、铁铬钴系合金以及钡铁氧体、锶铁氧体等。
②软磁材料。具有较低的矫顽力,较窄的磁滞回线。通常以初始磁导率,
饱和磁感应强度以及交流损耗等值的大小标志其主要性能。材料主要有 纯铁、铁硅合金系、铁镍合金系、锰锌铁氧体、镍锌铁氧体等。软磁材料是磁性材料中种类最多、应用最广泛的一类,在电力工业中主要是用作变压器、
电动机与
发 电机的磁性材料,在电子工业中制成各种磁性元件,广泛地应用于电视、广播、通信等领域。
③矩磁材料。磁滞回线呈矩形,而矫顽力较小的一种软磁材料,通常以剩磁Br与最大磁感应强度Bm之比的.矩形比Br/Bm值标志其静态特性。材料主要有锂锰铁氧体,锰镁铁氧体等。用在电子计算机,自动控制等技术中常作为记忆元件、开关和逻辑元件等的材料。
④旋磁材料。利用旋磁效应的磁性材料,通常用于微波频段,以复张量磁导率、饱和磁化强度等标志其主要性能。常用的材料为石榴石型铁氧 体、锂铁氧体等。可制作各种类型的微波器件,如隔离器、环流器、相移器等。自1952年以来,铁氧体在微波领域的应用,促使微波技术发生革命性的变革。利 用铁氧体的张量磁导率的特性才能制造出一系列非互易性微波器件;利用铁氧体的非线性效应,可设计出一系列有源器件,如倍频器、振荡器等。 ⑤压磁材料。利用磁致伸缩效应的磁性材料,以磁致伸缩系数标志其主要性能,通常用于机械能与电能的相互转换。例如可制成各种超声器件、滤波器、磁扭线存储器、振动测量器等。常用的材料为镍片、镍铁氧体等。目前正在深入研究磁声耦合效应,以期开拓新的应用领域。
⑥磁记录材料。主要包括磁头材料与磁记录介质两类,前者属于软磁材料,后者属于永磁材料,由于其应用的重要性与性能上的特殊要求而另列 一类。磁头材料除了应具有软磁材料的一般特性外,常要求高记录密度,低磨损。常用的有热压多晶铁氧体、单晶铁氧体、铝硅铁合金、硬叵姆合金等。磁记录介质 要求有较大的剩磁值,适当高的矫顽力值
,以便将电的信息通过磁头而在
磁带上以一定的剩磁迹记录下来。常用的材料为γ-三氧化二铁。高记录密度的材料有二氧化铬金属薄膜等。目前磁记录已普遍应用于各个领域,例如录音、录码、录像等,因此,近年来磁记录材料的产量急剧增长。从广义来说,磁泡材料也属于这一类。
5 / 17
磁性材料正在不断发展。例如非晶态磁性材料,磁性半导体等,都是当前极为活跃的研究领域。磁性材料的用途亦越趋广泛。
参考书目
李荫远、李国栋编:《铁氧体物理学》,修订版,科学出版社,北京,1978。郭贻诚著:《铁磁学》,高等教育出版社,北京,1965。R.S.特贝尔、D.J.克雷克著,北京冶金研究所译:《磁性材料》,科学出版社,北京,1979。(R.S.Tebble and D.J.Craik, magnetic materials, Wiley Inters cience,London,1969.)
具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外 磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性 质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料 。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、[[磁电阻材料]、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反应磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。
磁石
单位质量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗,或称铁损耗,它包括磁滞损耗和涡流损耗。其中由 磁滞现象引起的能量损耗为磁滞损耗,与磁滞回线所包围的面积成正比。在交变磁场中导电物质将感应出涡
流,由涡流产生的电阻损耗称涡流损耗。
篇二:电磁屏蔽材料的选用和设计要点
电磁屏蔽材料的选用和设计要点
屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。
(1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具
有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。在这种概念指导下结果是失败。因为,电磁屏蔽与屏蔽体接地与否并没有关系。真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。这就像在流体容器的缝隙处填充橡胶的道理一样。这种弹性导电填充材料就是电磁密封衬垫。
在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。实际上这是不确切的。因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。当波长远大于开口尺寸时,并不会产生明显的泄漏。因此,当干扰的频率较高时,这时波长较短,就需要使用电磁
密封衬垫。具体说,当干扰的频率超过10MHz时,就要考虑使用电磁密封衬垫。
凡是有弹性且导电良好的材料都可以用做电磁密封衬垫。按照这个原理制造的电磁密封衬垫有:
导电橡胶:在硅橡胶内填充占总重量70~ 80%比例的金属颗粒,如银粉、铜粉、铝粉、镀银铜粉、镀银铝粉、镀银玻璃球等。这种材料保留一部分硅橡胶良好弹性的特性,同时具有较好的导电性。
金属编织网:用铍铜丝、蒙乃尔丝或不锈钢丝编织成管状长条,外形很像屏蔽电缆的屏蔽层。但它的编织方法与电缆屏蔽层不同,电缆屏蔽层是用多根线编成的,而这种屏蔽衬垫是由一根线织成的。打个形象的比喻,就像毛衣的袖子一样。为了增强金属网的弹性,有时在网管内加入橡胶芯。
指形簧片:铍铜制成的簧片,具有很好的弹性和导电性。导电性和弹性。
多重导电橡胶:由两层橡胶构成,内层是普通硅橡胶,外层是导电橡胶。这种材料克服了传统导电橡胶弹性差的缺
点,使橡胶的弹性得以充分体现。它的原理有些像带橡胶芯的金属丝网条。
选择使用什么种类电磁密封衬垫时要考虑四个因素:屏蔽效能要求、有无环境密封要求、安装结构要求、成本要求。不同衬垫材料的特点比较,如表所示。
屏蔽按机理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽。
1 电场屏蔽【屏蔽机理】:将电场感应看成分布电容间的耦合。
【设计要点】:
a、 屏蔽板以靠近受保护物为好,而且屏蔽板的接地必须良好!!!
b、屏蔽板的形状对屏蔽效能的高低有明显影响。全封闭的金属盒最好,但工程中很难做到!
c、屏蔽板的材料以良导体为好,但对厚度无要求,只要有足够的强度就可了。
2 磁场屏蔽磁场屏蔽通常是指对直流或低频磁场的屏
蔽,其效果比电场屏蔽和电磁场屏蔽要差的多。【 屏蔽机理】:主要是依靠高导磁材料所具有的低磁阻,对磁通起着分路的作用,使得屏蔽体内部的磁场大为减弱。
【设计要点】:
a、 选用高导磁材料,如坡莫合金;
b、 增加屏蔽体的厚度;以上均是为了减小屏蔽体的磁阻; c、 被屏蔽的物体不要安排在紧靠屏蔽体的位置上,以尽量减小通过被屏蔽物体体内的磁通;
d、 注意屏蔽体的结构设计,凡接缝、通风空等均可能增加屏蔽体的磁阻,从而降低屏蔽效果。
e、对于强磁场的屏蔽可采用双层磁屏蔽体的结构。对要屏蔽外部强磁场的,则屏蔽体的外层选用不易饱和的材料,如硅钢;而内部可选用容易达到饱和的高导磁材料,如坡莫合金等。反之,如果要屏蔽内部强磁场时,则材料的排列次序要到过来。在安装内外两层屏蔽体时,要注意彼此间的绝缘。当没有接地要求时,可用绝缘材料做支撑件。若需接地时,可选用非铁磁材料(如铜、铝)做支撑件。
3 电磁场屏蔽电磁场屏蔽是利用屏蔽体阻止电磁场在空间传播的一种措施。
篇三:铁磁材料的性质
铁磁材料的性质
铁磁材料具有很强的被磁化特性,它们集电环在外磁场的作用下,能产生远大于外磁场的附加磁场。只有铁心的线圈,其磁场远比无铁心线圈的磁场强,所以电机、电器等设备都要采用铁心。这碳刷样就可以用较小的电流来产生较强约磁场,使线圈的体积、重量都大为减小。
铁成材料主要具恒压簧有如下的磁性能:
①高导磁性。铁磁材料的磁导率4在—投情况下远比非铁磁材料大。
②剩磁性。铁磁材料经磁无刷无环启动器化后,若励磁电流降低到o,铁磁材料中仍能保留一定的剩磁。
3磁饱和性。铁磁材料内的磁场增加到一定后,这时磁场增强变得极为缓慢,达到了饱和值。
④磁滞性。铁磁材料在交变磁化过程中,磁感应强度的变化滞后于磁场强度的变化且亩磁滞损耗。
铁磁材料常分成两类,软成材料和硕磁材料。软磁材料的剩磁、磁滞损耗等均较小,常用的软磁材料有硅钢片(电上钢板)、铸钢和铸铁等。硬磁材料的剩磁、磁滞损耗等均较大。硬磁材料经过磁化后,能得到很强的剩磁,而且不易退磁。常用的硬磁材料有钨钢、铝镍钻合金等,主要用于制造永久磁铁。
从自旋角度出发,什么材料具有磁性
磁性材料,是古老而用途十分广泛的功能材料,而物质的磁性早在3000年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。可以说,磁性材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。而通常认为,磁性材料是指由过度元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。
实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。 根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。 磁性材料的应用——变压器
我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去碰的物质叫硬磁性材料。一般来讲软磁性材料剩磁
基本特性
1、磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2、软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2) 3、软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
编辑本段简史
中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 磁性材料的磁滞回线
近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。50年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。后来又出现了强压磁性的稀土合金。非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。 软磁材料的一种——铁粉芯
编辑本段分类
磁性材料具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即 磁性材料
抗退磁能力)强,磁能积(BH)(即给空间提供的磁场能量)大。相对于软磁材料而言,它亦称为硬磁材料。 软磁材料制品
永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AlNi(Co)、FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类:主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。 永磁材料有多种用途。①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。 根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。 2、软磁材料 永磁材料
它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。 软磁材料的一种——铁粉芯 软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAl、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。 3、矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。 4、旋磁材料 具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧体器件)。常用的材料已形成系列,有Ni系、Mg系、Li系、YlG系和BiCaV系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的结构和形态。 5、压磁材料 这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合金;在小信号下使用则多用Ni系和NiCo系铁氧体。非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。压磁材料的生产和应用远不及前面四种材料。 磁性材料的应用——变压器 磁性材料是生产、生活、国防科学技术中广泛使用的材料。如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。此外,磁性材料在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。 磁性材料的用途广泛。主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。 中国古代的指南针——司南
编辑本段发展及种类
1、软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料——非晶态软磁合金。 2、常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 磁性材料
按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类: 磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯 (2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金
编辑本段常用软磁磁芯
磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 磁芯的有效磁导率μe及电感的计算公式为: μe = DL/4N2S × 109 。其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2)。 (1) 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。铁粉芯初始磁导率随直流磁场强度的变化。铁粉芯初始磁导率随频率的变化 (2)坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP 是由81%Ni、2%Mo及Fe粉构成。主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵。 高磁通粉芯HF是由50%Ni、50%Fe粉构成。主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。价格低于MPP。 (3) 铁硅铝粉芯(Kool Mμ Cores) 铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在1.05T 左右;导磁率从26~125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。有时也替代有气隙铁氧体作变压器铁芯使用。 2、 软磁铁氧体(Ferrites) 软磁铁氧体 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10 欧姆-米,一般在100kHZ 以下的频率使用。Cu-Zn、Ni-Zn铁氧体的电阻率为102~104 欧姆-米,在100kHz~10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。在应用上很方便。由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。 国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。 电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每10年下降3%~4%。广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。功率铁氧体具有高的饱和磁感应强度,为4000~5000Gs。另外具有低损耗/频率关系和低损耗/温度关系。也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。 (二) 带绕铁芯 1、硅钢片铁芯 硅钢片是一种合金,在纯铁中加入少量的硅(一般在4.5%以下)形成的铁硅系合金称为硅钢。该类铁芯具有最高的饱和磁感应强度值为20000Gs;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。是软磁材料中产量和使用量最大的材料。也是电源变压器用磁性材料中用量最大的材料。特别是在低频、大功率下最为适用。常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。但高频下损耗急剧增加,一般使用频率不超过400Hz。从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。在工频下使用时,常用带材的厚度为0.2~0.35毫米;在400Hz下使用时,常选0.1毫米厚度为宜。厚度越薄,价格越高。 2、坡莫合金 坡莫合金铁芯 坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。通过适当的工艺,可以有效地控制磁性能,比如超过105的初始磁导率、超过106的最大磁导率、低到2‰奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1μm的超薄带及各种使用形态。常用的合金有1J50、1J79、1J85等。1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100W以下小型较高频率变压器。1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。1J85 的初始磁导率可达十万105以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。 3、非晶及纳米晶软磁合金(Amorphous and Nanocrystalline alloys) 硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。非晶态金属与合金是70年代问世的一个新型材料领域。它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。 中国自从70年代开始了非晶态合金的研究及开发工作,经过“六五”、“七五”、“八五”期间的重大科技攻关项目的完成,共取得科研成果134项,国家发明奖2项,获专利16项,已有近百个合金品种。钢铁研究总院现具有4条非晶合金带材生产线、一条非晶合金元器件铁芯生产线。生产各种定型的铁基、铁镍基、钴基和纳米晶带材及铁芯,适用于逆变电源、开关电源、电源变压器、漏电保护器、电感器的铁芯元件,年产值近2000万元。“九五”正在建立千吨级铁基非晶生产线,进入国际先进水平行列。 目前,非晶软磁合金所达到的最好单项性能水平为: 初始磁导率 μo = 14 × 104 钴基非晶最大磁导率 μm= 220 × 104 钴基非晶矫顽力 Hc = 0.001 Oe 磁性材料
钴基非晶矩形比 Br/Bs = 0.995 钴基非晶饱和磁化强度 4πMs = 18300Gs 铁基非晶电阻率 ρ= 270μΩ/cm 常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。其国家牌号及性能特点见表及图所示,为便于对比,也列出晶态合金硅钢片、坡莫合金1J79 及铁氧体的相应性能。这几类材料各有不同的特点,在不同的方面得到应用。 牌号基本成分和特征: 1K101 Fe-Si-B 系快淬软磁铁基合金 1K102 Fe-Si-B-C 系快淬软磁铁基合金 1K103 Fe-Si-B-Ni 系快淬软磁铁基合金 1K104 Fe-Si-B-Ni Mo 系快淬软磁铁基合金 1K105 Fe-Si-B-Cr(及其他元素)系快淬软磁铁基合金 1K106 高频低损耗Fe-Si-B 系快淬软磁铁基合金 1K107 高频低损耗Fe-Nb-Cu-Si-B 系快淬软磁铁基纳米晶合金 1K201 高脉冲磁导率快淬软磁钴基合金 1K202 高剩磁比快淬软磁钴基合金 1K203 高磁感低损耗快淬软磁钴基合金 1K204 高频低损耗快淬软磁钴基合金 1K205 高起始磁导率快淬软磁钴基合金 1K206 淬态高磁导率软磁钴基合金 1K501 Fe-Ni-P-B 系快淬软磁铁镍基合金 1K502 Fe-Ni-V-Si-B 系快淬软磁铁镍基合金 400Hz: 硅钢铁芯 非晶铁芯 功率(W) 45 45 铁芯损耗(W) 2.4 1.3 激磁功率(VA) 6.1 1.3 总重量(g) 295 276
编辑本段展望
磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。磁性半导体材料和磁敏材料和器件可以应用于遥感、遥则技术和机器人。人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。磁性液体已进入实用阶段。某些新的物理和化学效应的发现(如拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。较小,硬磁性材料剩磁较大。
炫神ylg是什么意思
炫神ylg是用来形容排位遇到的自报家门的水友,或者不认识炫神的玩家,易拉罐的首字母缩写ylg。
易拉罐这个梗出自英雄联盟主播炫神,该主播在直播时弹幕经常会刷易拉罐这个梗,最经典的一句对话便是“你是易拉罐觉得烂,你不是易拉罐当然不觉得烂”。
用来骂一些不了解事情却又喜欢自以为随便说的人。
网络词:
通常来源于影视网络热门用语,在更多的是因为某一社会现象,因而产生了一些被大家都接受的说法。由于每年年末都会进行网络新词的评选,再加上媒体等的聚焦,使得网络新语的认可度不断提高,并日益融入人们生活中。
这种网络用语,通常分为几个大类:谐音型,拼音缩写型,象形动作型,英文缩写型,数字型,行业专用型。
孔明灯的制作
1.孔明灯的制作方法
孔明灯,相传是三国时期诸葛亮发明的。它是利用热空气比空气轻,在空气中上升的原理制成的。
一、材料
竹篾、白纸、细铁丝、酒精、脱脂棉、浆糊。
二、制作方法
1、用3张薄白纸糊成一个顶端密封的圆柱体,其周长为225cm,高约90cm。
2、用宽1cm,厚0.1cm的竹蔑扎一个周长约220cm的圆圈,其下底拴2根互相垂直的细铁丝。
3、将竹圈放在圆柱体下端作底,使两者边沿近于重合,用浆糊粘住。
4、用竹蔑扎一个小圆圈,直径约15cm,周围包上脱脂棉约10g,作为燃心,然后挂在两铁丝的交叉点上。
三、放飞
选择晴朗无风的夜晚,一人拿住灯底的左右侧,另一人用酒精将脱脂棉浸透后点燃,直到双手感到孔明灯有上升之势,即慢慢放开双手,孔明灯便徐徐飞起,上升高度可达1000m左右。
孔明灯--相传此灯是孔明所发明创造的,用于战争中部队之间通信。其工作原理是热空气比冷空气轻,与热气球一样,只是这种放飞方法更简单,操作更方便。孔明灯的制作办法是:
材料:竹子、铁丝、塑料薄膜、废毛巾、油脂(或其他燃料)
工具:刀、透明胶、钳子、
安全提醒:放飞时较危险,禁止一个人操作,小朋友必须有成年人看护、协助。
取一根长2米的竹子,用刀削成直径0.5cm的细条,捆扎成圆形,用极细的铁丝以+型与竹子连接作为加热支架。另找一塑料薄膜(薄的、轻的)围成与竹子圈一样大小的筒状,筒高0.5米,将筒的上面也用薄膜加盖密封,薄膜下面与竹子用透明胶粘好。再找一块废旧的毛巾20cm*20cm,沾少许煤油(放飞前倒油脂),孔明灯就制作完成。下一步放飞,首先要选择一个宽敞,四周无高树和电线的地方,晚上放飞的观赏效果很好,放飞时先将油脂倒一些在毛巾上,将毛巾放在铁丝支架中心,一人把孔明灯的薄膜从上面提起,另一人点燃毛巾,毛巾燃烧使薄膜内的空气受热变轻,提灯的人感觉孔明灯的薄膜膨胀变轻,(此时较危险,不注意的话容易将薄膜点燃。如果放飞的场地有树枝把灯挂住,就会发生火灾,一定要小心)即刻顺手缓缓放出,孔明灯徐徐自动升空。达到一定高度后,空气稀薄,燃烧逐渐熄灭,不足以支撑它继续升起,或燃料烧完,孔明灯没有上升的动力后,跌落。
2.孔明灯--相传此灯是孔明所发明创造的,用于战争中部队之间通信。其工作原理是热空气比冷空气轻,与热气球一样,只是这种放飞方法更简单,操作更方便。孔明灯的制作办法是:
材料:竹子、铁丝、塑料薄膜、废毛巾、油脂(或其他燃料)
工具:刀、透明胶、钳子、
安全提醒:放飞时较危险,禁止一个人操作,小朋友必须有成年人看护、协助。
取一根长2米的竹子,用刀削成直径0.5cm的细条,捆扎成圆形,用极细的铁丝以+型与竹子连接作为加热支架。另找一塑料薄膜(薄的、轻的)围成与竹子圈一样大小的筒状,筒高0.5米,将筒的上面也用薄膜加盖密封,薄膜下面与竹子用透明胶粘好。再找一块废旧的毛巾20cm*20cm,沾少许煤油(放飞前倒油脂),孔明灯就制作完成。下一步放飞,首先要选择一个宽敞,四周无高树和电线的地方,晚上放飞的观赏效果很好,放飞时先将油脂倒一些在毛巾上,将毛巾放在铁丝支架中心,一人把孔明灯的薄膜从上面提起,另一人点燃毛巾,毛巾燃烧使薄膜内的空气受热变轻,提灯的人感觉孔明灯的薄膜膨胀变轻,(此时较危险,不注意的话容易将薄膜点燃。如果放飞的场地有树枝把灯挂住,就会发生火灾,一定要小心)即刻顺手缓缓放出,孔明灯徐徐自动升空。达到一定高度后,空气稀薄,燃烧逐渐熄灭,不足以支撑它继续升起,或燃料烧完,孔明灯没有上升的动力后,跌落。
视频:
ylg是谁发明的的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、ylg是谁发明的的信息别忘了在本站进行查找喔。
版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。
评论