baike.aiufida.com 小编在本篇文章中要讲解的知识是有关域论是谁发明的和域论基本定理的内容,详细请大家根据目录进行查阅。
文章目录:
- 1、世界科技的新发展
- 2、代数学发展的4个阶段:算术、初等代数、高等代数、抽象代数
- 3、数学是一个什么样的东西?
- 4、世界科技史发展近代由哥白尼到牛顿是第一阶段,还有哪几个阶段?后来是怎么发展一直到现在的?
- 5、群论是什么难度的数学
- 6、数学的来历(100字)
世界科技的新发展
近代和现代科技史的发展;参考网站
1901年,严格证明狄利克雷原理,开创变分学的直接方法乎判谨,在工程技术的计算问题中有很多应用(德国 希尔伯特)。
首先提出群的表示理论。此后,各种群的表示理论得到大量研究(德国 舒尔、弗洛伯纽斯)。
基本上完成张量分析,又名绝对微分学。确立了研究黎曼几何和相对论的分析工具(意大利 里齐、勒维.齐维塔)。
提出勒贝格测度和勒贝格积分。推广了长度、面积积分的概念(法国 勒贝格)。
1903年,发现集合论中的罗素悖理,出现所谓第三次数学危机(英国 贝.罗素)。
建立线性积分方程的基本理论,是解决数学物理问题的数学工具,并为建立泛函分析作了准备(瑞典 弗列特荷姆)。
1906年,总结了古典代数几何岁基学的研究(意大利 赛维利等)。
把由函数组成的无限集合作为研究对象,引入函数空间的概念,并开始形成希尔伯特空间。这是泛函分析的发源(法国 弗勒锡,匈牙利 里斯)。
开始系统地研究多个自变量的复变函数理论(德国 哈尔托格斯)。 初次提出“马尔可夫链”的数学模型(俄国 马尔可夫)。
1907年,证明复变函数论的一个基本原理---黎曼共形映照定理(德国 寇贝)。
反对在数学中使用排中律,提出直观主义数学(美籍荷兰人 路.布劳威尔)。
1908年,点集拓扑学形成(德国 忻弗里斯)。
提出集合论的公理化系统(德国 策麦罗)。
1909年,解决数论中著名的华林问题(德国 希尔冲颂伯特)。
1910年,总结了19世纪末20世纪初的各种代数系统如群、代数、域等的研究,开创了现代抽象代数(德国 施坦尼茨)。
发现不动点原理,后来又发现了维数定理、单纯形逼近方法,使代数拓扑成为系统理论(美籍荷兰人 路.布劳威尔)。
1910-1913年,出版《数学原理》三卷,企图把数学归结到形式逻辑中去,是现代逻辑主义的代表著作(英国 贝.素、怀特海)。
............................................................
◇1911-1920年◇
1913年,完成了半单纯李代数有限维表示理论,奠定了李群表示理论的基础。在量子力学和基本粒子理论中有重要应用(法国 厄.加当,德国 韦耳)。
研究黎曼面,初步产生了复流形的概念(德国 韦耳)。
1914年,提出拓扑空间的公理系统,为一般拓扑学建立了基础(德国 豪斯道夫)。
1915年,把黎曼几何用于广义相对论,成为它的主要数学工具。解出球对称的场方程,从而可以计算水星近日点的移动等问题(瑞士、美籍德国人 爱因斯坦,德国 卡.施瓦茨西德)。
1918年,应用复变函数论方法来研究数论,建立解析数论(英国 哈台、立笃武特)。
为改进自动电话交换台的设计,提出排队论的数学理论(丹麦 爱尔兰)。
希尔伯脱空间理论的形成(匈牙利 里斯)。
1919年,建立P-adic数论,在代数数论和代数几何中有重要应用(德国 亨赛尔)。
............................................................
◇1921-1930年◇
1922年 提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论(德国 希尔伯特)。
1923年 提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端(法国 厄·加当)。
提出偏微分方程适定性,解决二阶双曲型方程的柯西问题(法国 阿达玛)。
提出更广泛的一类函数空间——巴拿哈空间的理论(波兰 巴拿哈)。 提出无限维空间的一种测度——维纳测度,对概率论和泛函分析有一定作用(美国 诺·维纳)。
1925年 创立概周期函数(丹麦哈·波尔)。
以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法(英国 费希尔)。
1926年 大体上完成对近世代数有重大影响的理想理论(德国 纳脱)。
1927年 建立动力系统的系统理论,是微分方程定性理论的一个重要方面(美国 毕尔霍夫)。
1928年 提出解偏微分方程的差分方法(美籍德国人 理·柯朗)。
首次提出通信中的信息量概念(美国 哈特莱)。
提出拟似共形映照理论,在工程技术上有一定应用(德国 格罗许,芬兰 阿尔福斯,苏联 拉甫连捷夫)。
1930年 建立格论,是代数学的重要分支,对摄影几何、点集论及泛函分析都有应用(美国 毕尔霍夫)。
提出自伴算子谱分析理论并应用于量子力学(美籍匈牙利人 冯·诺伊曼)。
............................................................
◇1931-1940年◇
1931年 发现多维流形上的微分型和流形的上同调性质的关系,给拓扑学以分析工具(瑞士 德拉姆)。
证明了公理化数学体系的不完备性(奥地利 哥德尔)。
发展马尔可夫过程理论(苏联 柯尔莫哥洛夫,美国 费勒)。
1932年 解决多元复变函数论的一些基本问题(法国 亨·嘉当)。
建立各态历经的数学理论(美国 毕尔霍夫,美籍匈牙利人 冯·诺伊曼)。
建立递归函数理论,是数理逻辑的一个分支,在自动机和算法语言中有重要应用(法国 赫尔勃兰特,奥地利 哥德尔,美国 克林)。
1933年 提出拓扑群的不变测度概念(匈牙利 奥·哈尔)。
提出概率论的公理化体系(苏联 柯尔莫哥洛夫)。
制订复平面上的傅立叶变式理论(美国 诺·维纳、丕莱)。
1934年 创建大范围变分学的理论,为微分几何和微分拓扑提供了有效工具(美国 莫尔斯)。
解决极小曲面的基本问题——普拉多问题,即求通过给定边界而面积为最小的曲面(美国 道格拉斯等)。
提出平稳过程理论(苏联 辛钦)。
1935年 在拓扑学中引入同伦群,成为代数拓扑和微分拓扑的重要工具(波兰 霍勒维奇等)。
开始研究产品使用寿命和可靠性的数学理论(法国 龚贝尔)。 1936年 寇尼克系统地提出与研究图的理论。
50年代以后,由于在博弈论、规划论、信息论等方面的应用,贝尔治等对图的理论有很大的发展(德国 寇尼克,美国 贝尔治)。
现代的代数几何学开始形成(荷兰 范德凡尔登、法国 外耳,美国 查里斯基,意大利 培·塞格勒等)。
提出理想的通用计算机概念,同时建立了算法理论(英国 图灵,美国 邱吉、克林等)。
建立算子环论,可以表达量子场论数学理论中的一些概念(美籍匈牙利人 冯·诺伊曼)。
提出偏微分方程中的泛函分析方法(苏联 索波列夫)。
1937年 证明微分流形的嵌入定理,是微分拓扑学的创始(美国 怀特尼)。
提出偏微分方程组的分类法,得出某些基本性质(苏联 彼得洛夫斯基)。
开始系统研究随机过程的统计理论(瑞士 克拉默)。
1938年 布尔巴基丛书《数学原本》开始出版,企图从数学公理结构出发,以非常抽象的方式叙述全部现代数学(法国 布尔巴基学派)。 1940年 证明连续统假说在集合论公理系中的无矛盾性(美国 哥德尔)。
提出求数值解的松弛方法(英国 绍司威尔)。
提出交换群调和分析的理论(苏联 盖尔方特)。
............................................................
◇1941-1950年◇
1941年,定义流形上的调和积分,并用于代数流行,成为研究流形同调性质的分析工具(美国 霍奇)。
1941年,开始建立马尔可夫过程与随机微分方程的联系(苏联 谢 .伯恩斯坦,日本 伊藤清)。
1941年,创立赋范环理论,主要用于群上调和分析和算子环论(苏联 盖尔芳特)。
1942年,开始研究随机过程的预测,滤过理论及其在火炮自动控制上的应用,由此产生了“统计动力学”(美国诺.维纳,苏联 柯尔莫哥洛夫)。
1943年,提出求代数方程数字解的林士谔方法(中国 林士谔)。 1944年,建立了对策论,即博弈论(美籍匈牙利人 冯.诺伊曼等)。 1945年,推广了古典函数的概念,创立广义函数论,对微分方程理论和泛函分析有重要作用(法国 许瓦茨)。
1945年,建立代数拓扑和微分几何的联系,推进了整体几何学的发展(美籍中国人 陈省身)。
1945年,提出了噪声的统计理论(美国 斯.赖斯)。
1946年, 美国莫尔电子工程学校和宾夕法尼亚大学试制成功第一架电子计算机ENIAC(设计者为埃克特、莫希莱等人)。
1946年,建立现代代数几何学基础(法国 外耳)。
1946年,发展三角和法研究解析数论(中国 华罗庚)。
1946年,建立罗伦兹群的表示理论(苏联 盖尔芳特、诺伊玛克)。 1947年,创立统计的序贯分析法(美国 埃.瓦尔特)。
1948年,造成稳态机,能在各种变化的外界条件下自行组织,已达到稳定状态。鼓吹这是人造大脑的最初雏形、机器能超过人等观点(英国 阿希贝)。
1948年,出版《控制论》,首次使用控制论一词(美国 诺.维纳)。 1948年,提出通信的数学理论(美国 申农)。
1948年,总结了非线性微分方程在流体力学方面的应用,推进了这方面的研究(美籍德国人 弗里得里希斯、理 .柯朗)。
1948年,提出范畴论,是代数中一种抽象的理论,企图将数学统一于某些原理(波兰 爱伦伯克,美国 桑.麦克伦)。
1948年,将泛函分析用于计算数学(苏联 康脱洛维奇)。
1949年,开始确立电子管计算机体系,通称第一代计算机。英国剑桥大学制成第一台通用电子管计算机EDSAC。
1950年,发表《计算机和智力》一文,提出机器能思维的观点(英国 图灵)。
1950年,提出统计决策函数的理论(美国 埃.瓦尔特)。
1950年,提出解椭圆形方程的超松弛方法,是目前电子计算机上常用的方法(英国 大.杨)。
1950年,提出纤维丛的理论(美国 斯丁路特,美籍中国人 陈省身,法国 艾勒斯曼)。
............................................................
◇1951-1960年◇
1951年,五十年代以来,“组合数学”获得迅速发展,并应用于试验设计、规划理论、网络理论、信息编码等(美国 埃.霍夫曼、马.霍尔等)。
1952年,证明连续群的解析性定理(即希尔伯特第五问题)(美国 蒙哥马利等)。
1953年,提出优选法,并先后发展了多种求函数极值的方法(美国 基费等)。
1954年,发表《工程控制论》,系统总结自动控制理论的新发展(中国 钱学森)。
1955年,制定同调代数理论(法国 亨.加当、格洛辛狄克,波兰 爱伦伯克)。
1955年,提出求数值积分的隆姆贝方法,是目前电子计算机上常用的一种方法(美国 隆姆贝格)。
1955年,制定线性偏微分算子的一般理论(瑞典 荷尔蒙特等)。 1955年,提出解椭圆形或双线型偏微分方程的交替方向法(美国 拉斯福特等)。
1955年,解代数数的有理迫近问题(英国 罗思)。
1956年,提出统筹方法(又名计划评审法),是一种安排计划和组织生产的数学方法为美国杜邦公司首先采用。
1956年,提出线性规划的单纯形方法(英国 邓济希等)。
1956年,提出解双曲型和混合型方程的积分关系法(苏联 道洛尼钦)。
1957年,发现最优控制的变分原理(苏联 庞特里雅金)。
1957年,创立动态规划理论,它是研究使整个生产过程达到预期的最佳目的的一种数学方法(美国 贝尔曼)。
1957年,以美国康纳尔实验室的“感知器”的研究为代表,开始迅速发展图像识别理论(美国 罗森伯拉特等)。
1958年,创立算法语言ALGOL(58),后经改进又提出(ALGOL)(60),ALGOL(68)等算法语言,用于电子计算机程序自动化(欧洲GAMM小组,美国ACM小组)。
1958年,中国普遍地使用和改进“线性规划”法。
1958年,中国科学院计算机技术研究所试制成功中国第一架通用电子计算机。
1959年,美国国际商业机器公司制成第一台晶体管计算机“IBM7090”。第二代计算机——半导体晶体管计算机开始迅速发展。 1959—1960年,伽罗华域论在编码问题上的应用,发明BCH码(法国 霍昆亥姆,美国 儿.玻色,印度 雷.可都利)。
1960年,提出数字滤波理论,进一步发展了随机过程在制导系统中的应用(美国 卡尔门)。
1960年,建立非自共轭算子的系统理论(苏联 克雷因,美国 顿弗特)。
谢谢您投我一票!!!
代数学发展的4个阶段:算术、初等代数、高等代数、抽象代数
转自知乎
算术一般就是指自然数、正分数的四则运算,同时作为现代小学课程内容,主要通过计数、度量而引入一些简单的应御伏芹用题。算术的主体内容虽然难度不大,却是数学中最古老的一个分支,经过长达数千年的时厅腊间,逐渐地积累起来的,并作为经验不断凝固在人们的意识中。自然数是在为满足生产、生活中的计算和计数需求,而产生的抽象概念。除了计数需求,还要计算包括长度、重量和时间在内的各种量,因此进一步出现分数。现代初等算术运算方法的发展,起源于10世纪或11世纪的印度;经阿拉伯人传到欧洲。15世纪,被改造成现在的形式。19世纪中叶,格拉斯曼首次成功地挑选出一个定义加法与乘法运算的基本公理体系;而算术的其它命题,可以作为逻辑的结果,从该体系中得到推导。后来,皮亚诺进一步完善了格拉斯曼的体系。算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性,构成了数学其它分支的最坚实的镇毕基础。
初等代数是古老算术的演变、推广和发展。 在古代,当算术积累了丰富的数量问题的解法后,为寻求更系统的、更普遍的方法,以解决各种数量关系问题,产生了方程的求解为中心问题的初等代数。以至于长期以来,数学家们把代数学理解成方程的科学,并把主要精力集中在方程的研究上。即研究数字和文字的代数运算理论和方法,更确切的说,是研究多项式的代数运算理论和方法,其研究方法是计算性的。
讨论方程,首先是如何把实际中的数量关系表达为代数式,根据等量关系列出方程。其中代数式包括整式、分式和根式这三大类。代数式可以进行加、减、乘、除四则运算,以及乘方和开方,服从基本运算定律。
解方程问题的发展过程中,数系得到了扩充。算术中讨论的整数和分数的概念扩充到有理数的范围,因此初等代数能解决更多的问题。但仍然存在一些方程在有理数范围内无解。于是,数的概念再一次扩充到实数,进而又进一步扩充到复数。
那么复数范围内还会存在方程无解吗,复数还需要进行扩展吗?NO!代数学一个著名的定理—— 代数基本定理 表明:n次方程有n个根。1742年12月15日,欧拉在一封信中明确地陈述了代数基本定理,德国的数学王子高斯在1799年给出了严格的证明。
综合上面的叙述,组成初等代数的基本内容就是:
有上述基本内容可以看出,初等代数内容的学习设置于现代中学课程中,作为算术的继续和推广,主要的问题就是代数式的有限次数的代数运算,以及产生的方程求解。
代数方程的求解发展简史:
初等代数学向两个方向进一步发展:未知数更多的一次方程组;未知数次数更高的高次方程。在这两个方向上的发展,使得代数学发展到高等代数的阶段。高等代数作为代数学发展到高级阶段的总称,包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数和多项式代数。
高等代数的研究对象,在初等代数的基础上进一步扩充,引入了包括集合、向量、向量空间、矩阵、行列式等在内的新概念。这些新概念具有和数相类似的运算特点,但其研究的方法和运算的方法更加抽象和复杂,新对象的运算,并不总是符号数的基本运算定律。于是代数学纳入了包括群论、环论、域论在内的代数系统,其中群论是研究数学和物理现象的对称性规律的有力工具,也成为现代数学中最具概括性的重要的数学概念,广泛应用于其他部门。
高等代数的基本内容
多项式可视为一类简单的函数,其应用非常广泛。多项式理论的中心问题是,代数方程根的计算和分布,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,寻找解方程的方法。
多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。其中整除性质对于解代数方程是很有用的。解代数方程对应多项式的零点问题,零点不存在,所对应的代数方程无解。
在线性代数中最重要的概念是:行列式和矩阵。行列式的概念最早由日本数学家关孝和在1683年的著作《解伏题之法》中提出,并给予较详细的叙述。欧洲第一个提出行列式概念的是莱布尼茨。1841年,德国数学家雅可比总结并提出了行列式的系统理论。
行列式具有一定的计算规则,它可以作为解线性方程组的工具,把一个线性方程组的解表示成公式,这也意味着行列式是一个数,或一种运算。
由于行列式有着相同的行数和列数,排成的表是正方形的,基于行列式的研究进而发现了矩阵的理论。同是由数排成行和列的数表,矩阵是一个数组,且行数和列数不要求相等。利用矩阵,可以把线性方程组中的系数组成向量空间中的向量;基于矩阵理论,多元线性方程组的解的结构问题,得到彻底解决。除此之外,矩阵在力学、物理、科技等方面得到广泛的应用。
抽象代数也被称为近世代数,创始人之一是被誉为天才数学家的伽罗华。伽罗华通过研究代数方程存在根式解所满足的条件,给出了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题,并提出的“Galois域”、“Galois群”和“Galois理论”都是近世代数所研究的最重要的课题。Galois群理论被公认为19世纪最杰出的数学成就之一。Galois群论还给出了几何图形能否用尺规作图的一般判别法,圆满解决了三等分任意角、倍立方体的问题。更重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。
1843年,哈密尔顿发明了不满足乘法交换律的“四元数”。第二年,格拉斯曼推演出更具一般性的几类代数。1857年,凯莱设计出另一种不可交换的矩阵代数。这些研究打开了抽象代数的大门。事实上,减弱或删去普通代数的某些假定,或将某些假定与其他可兼容的假定代替,就能得到许多种代数体系。
抽象代数的奠基人及理论
抽象代数的研究对象 是各种抽象的、公理化代数系统。由于代数可处理实数、复数以外的向量、矩阵、变换等对象,并分别依赖它们各有的演算定律,而数学家将它们共有的内容升华抽象出来,达到更高层次的抽象代数,使之成为当代大部分数学的通用语言。抽象代数自身包含有群、环、Galois理论、格论等许多分支,并与数学其它分支交叉而产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。
数学是一个什么样的东西?
数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
1:数学史
2:数理逻辑与数学基础
X轴Y轴
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
3:数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
4:代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论迹芦 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
5:代数几何学
6:几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
9:非标准分析
10:函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
11:常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
12:偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
13:动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
14:积分方程
15:泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
16:计算数学
a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计衫没算数学其他学科
17:概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
18:数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
19:应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
20:应用统计数学其他学科
21:运筹学
a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论姿塌带 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
22:组合数学
23:模糊数学
24:量子数学
25:应用数学 (具体应用入有关学科)
26:数学其他学科
发展历史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数学研究”.即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的.
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).
就纵度而言,在数学各自领域上的探索亦越发深入.
图中数字为国家二级学科编号.
结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.
空间
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
基础
旋转曲面(8张)
主条目:数学基础
为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献.
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”
逻辑
主条目:数理逻辑
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果.就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性.
符号
编辑
主条目:数学符号
也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜.
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的.在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序.现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步.它被极度的压缩:少量的符号包含著大量的讯息.如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码.
严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
数量
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数.
另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
简史
西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.
中国数学简史
主条目:中国数学史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.
相关
编辑
中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近现代也有不少世界领先的数学研究成果就是以华人数学家命名的:
【李善兰恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式).
【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”.
【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”.
【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”.
【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”.
【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”.
【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”.
【王氏悖论】数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”.
【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”.
【陈氏定理】数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”.
【杨—张定理】数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”.
【陆氏猜想】数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”.
【夏氏不等式】数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”.
【姜氏空间】数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”.
【侯氏定理】数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”.
【周氏猜测】数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”.
【王氏定理】数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”.
【袁氏引理】数学家袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”.
【景氏算子】数学家景乃桓在对称函数方面的研究成果被国际上命名为“景氏算子”.
【陈氏文法】数学家陈永川在组合数学方面的研究成果被国际上命名为“陈氏文法”.
数学名言
外国人物
万物皆数.——毕达哥拉斯
几何无王者之道.——欧几里德
数学是上帝用来书写宇宙的文字.——伽利略[2]
我决心放弃那个仅仅是抽象的几何.这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何.——笛卡儿(Rene Descartes 1596-1650)
数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉
数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.数学是科学之王.——高斯
这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)
如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误.——柯西(Augustin Louis Cauchy 1789-1857)
数学的本质在于它的自由.——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845-1918)
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切.——克莱因(Christian Felix Klein 1849-1925)
只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡. ——希尔伯特(David Hilbert 1862-1943)
问题是数学的心脏.——保罗·哈尔莫斯(Paul Halmos 1916-2006)
时间是个常数,但对勤奋者来说,是个‘变数’.用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍.——雷巴柯夫
世界科技史发展近代由哥白尼到牛顿是第一阶段,还有哪几个阶段?后来是怎么发展一直到现在的?
近代和现代科技史的发展;参考网站
1901年,严格证明狄利克雷原理,开创变分学的直接方法,在工程技术的计算问题中有很多应用(德国 希尔伯特)。
首先提出群的表示理论。此后,各种群的表示理论得到大量研究(德国 舒尔、弗洛伯纽斯)。
基本上完成张量分析,又名绝对微分学。确立了研究黎曼几何和相对论的分析工具(意大利 里齐、勒维.齐维塔)。
提出勒贝格测度和勒贝格积分。推广了长度、面积积分的概念(法国 勒贝格)。
1903年,发现集合论中的罗素悖理,出现所谓第三次数学危机(英国 贝.罗素)。
建立线性积分方程的基本理论,是解决数学物理问题的数学工具,并为建立泛源庆森函分析作了准备(瑞典 弗列特荷姆)。
1906年,总结了古典代数几何学的研究(意大利 赛维利等)。
把由函数组成的无限集合作为研究对象,引入函差谨数空间的概念,并开始形成希尔伯特空间。这是泛函分析的发源(法国 弗勒锡,匈牙利 里斯)。
开始系统地研究多个自变量的复变函数理论(德国 哈尔托格斯)。 初次提出“马尔可夫链”的数学模型(俄国 马尔可夫)。
1907年,证明复变函数论的一个基本原理---黎曼共形映照定理(德国 寇贝)。
反对在数学中使用排中律,提出直观主义数学(美籍荷兰人 路.布劳威尔)。
1908年,点集拓扑学形成(德国 忻弗里斯)。
提出集合论的公理化系统(德国 策麦罗)。
1909年,解决数论中著名的华林问题(德国 希尔伯特)。
1910年,总结了19世纪末20世纪初的各种代数系统如群、代数、域等的研究,开创了现代抽象代数(德国 施坦尼茨)。
发现不动点原理,后来又发现了维数定理、单纯形逼近方法,使代数拓扑成为系统理论(美籍荷兰人 路.布劳威尔)。
1910-1913年,出版《数学原理》三卷,企图把数学归结到形式逻辑中去,是现代逻辑主义的代表著作(英国 贝.素、怀特海)。
............................................................
◇1911-1920年◇
1913年,完成了半单纯李代数有限维表示理论,奠定了雹亩李群表示理论的基础。在量子力学和基本粒子理论中有重要应用(法国 厄.加当,德国 韦耳)。
研究黎曼面,初步产生了复流形的概念(德国 韦耳)。
1914年,提出拓扑空间的公理系统,为一般拓扑学建立了基础(德国 豪斯道夫)。
1915年,把黎曼几何用于广义相对论,成为它的主要数学工具。解出球对称的场方程,从而可以计算水星近日点的移动等问题(瑞士、美籍德国人 爱因斯坦,德国 卡.施瓦茨西德)。
1918年,应用复变函数论方法来研究数论,建立解析数论(英国 哈台、立笃武特)。
为改进自动电话交换台的设计,提出排队论的数学理论(丹麦 爱尔兰)。
希尔伯脱空间理论的形成(匈牙利 里斯)。
1919年,建立P-adic数论,在代数数论和代数几何中有重要应用(德国 亨赛尔)。
............................................................
◇1921-1930年◇
1922年 提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论(德国 希尔伯特)。
1923年 提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端(法国 厄·加当)。
提出偏微分方程适定性,解决二阶双曲型方程的柯西问题(法国 阿达玛)。
提出更广泛的一类函数空间——巴拿哈空间的理论(波兰 巴拿哈)。 提出无限维空间的一种测度——维纳测度,对概率论和泛函分析有一定作用(美国 诺·维纳)。
1925年 创立概周期函数(丹麦哈·波尔)。
以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法(英国 费希尔)。
1926年 大体上完成对近世代数有重大影响的理想理论(德国 纳脱)。
1927年 建立动力系统的系统理论,是微分方程定性理论的一个重要方面(美国 毕尔霍夫)。
1928年 提出解偏微分方程的差分方法(美籍德国人 理·柯朗)。
首次提出通信中的信息量概念(美国 哈特莱)。
提出拟似共形映照理论,在工程技术上有一定应用(德国 格罗许,芬兰 阿尔福斯,苏联 拉甫连捷夫)。
1930年 建立格论,是代数学的重要分支,对摄影几何、点集论及泛函分析都有应用(美国 毕尔霍夫)。
提出自伴算子谱分析理论并应用于量子力学(美籍匈牙利人 冯·诺伊曼)。
............................................................
◇1931-1940年◇
1931年 发现多维流形上的微分型和流形的上同调性质的关系,给拓扑学以分析工具(瑞士 德拉姆)。
证明了公理化数学体系的不完备性(奥地利 哥德尔)。
发展马尔可夫过程理论(苏联 柯尔莫哥洛夫,美国 费勒)。
1932年 解决多元复变函数论的一些基本问题(法国 亨·嘉当)。
建立各态历经的数学理论(美国 毕尔霍夫,美籍匈牙利人 冯·诺伊曼)。
建立递归函数理论,是数理逻辑的一个分支,在自动机和算法语言中有重要应用(法国 赫尔勃兰特,奥地利 哥德尔,美国 克林)。
1933年 提出拓扑群的不变测度概念(匈牙利 奥·哈尔)。
提出概率论的公理化体系(苏联 柯尔莫哥洛夫)。
制订复平面上的傅立叶变式理论(美国 诺·维纳、丕莱)。
1934年 创建大范围变分学的理论,为微分几何和微分拓扑提供了有效工具(美国 莫尔斯)。
解决极小曲面的基本问题——普拉多问题,即求通过给定边界而面积为最小的曲面(美国 道格拉斯等)。
提出平稳过程理论(苏联 辛钦)。
1935年 在拓扑学中引入同伦群,成为代数拓扑和微分拓扑的重要工具(波兰 霍勒维奇等)。
开始研究产品使用寿命和可靠性的数学理论(法国 龚贝尔)。 1936年 寇尼克系统地提出与研究图的理论。
50年代以后,由于在博弈论、规划论、信息论等方面的应用,贝尔治等对图的理论有很大的发展(德国 寇尼克,美国 贝尔治)。
现代的代数几何学开始形成(荷兰 范德凡尔登、法国 外耳,美国 查里斯基,意大利 培·塞格勒等)。
提出理想的通用计算机概念,同时建立了算法理论(英国 图灵,美国 邱吉、克林等)。
建立算子环论,可以表达量子场论数学理论中的一些概念(美籍匈牙利人 冯·诺伊曼)。
提出偏微分方程中的泛函分析方法(苏联 索波列夫)。
1937年 证明微分流形的嵌入定理,是微分拓扑学的创始(美国 怀特尼)。
提出偏微分方程组的分类法,得出某些基本性质(苏联 彼得洛夫斯基)。
开始系统研究随机过程的统计理论(瑞士 克拉默)。
1938年 布尔巴基丛书《数学原本》开始出版,企图从数学公理结构出发,以非常抽象的方式叙述全部现代数学(法国 布尔巴基学派)。 1940年 证明连续统假说在集合论公理系中的无矛盾性(美国 哥德尔)。
提出求数值解的松弛方法(英国 绍司威尔)。
提出交换群调和分析的理论(苏联 盖尔方特)。
............................................................
◇1941-1950年◇
1941年,定义流形上的调和积分,并用于代数流行,成为研究流形同调性质的分析工具(美国 霍奇)。
1941年,开始建立马尔可夫过程与随机微分方程的联系(苏联 谢 .伯恩斯坦,日本 伊藤清)。
1941年,创立赋范环理论,主要用于群上调和分析和算子环论(苏联 盖尔芳特)。
1942年,开始研究随机过程的预测,滤过理论及其在火炮自动控制上的应用,由此产生了“统计动力学”(美国诺.维纳,苏联 柯尔莫哥洛夫)。
1943年,提出求代数方程数字解的林士谔方法(中国 林士谔)。 1944年,建立了对策论,即博弈论(美籍匈牙利人 冯.诺伊曼等)。 1945年,推广了古典函数的概念,创立广义函数论,对微分方程理论和泛函分析有重要作用(法国 许瓦茨)。
1945年,建立代数拓扑和微分几何的联系,推进了整体几何学的发展(美籍中国人 陈省身)。
1945年,提出了噪声的统计理论(美国 斯.赖斯)。
1946年, 美国莫尔电子工程学校和宾夕法尼亚大学试制成功第一架电子计算机ENIAC(设计者为埃克特、莫希莱等人)。
1946年,建立现代代数几何学基础(法国 外耳)。
1946年,发展三角和法研究解析数论(中国 华罗庚)。
1946年,建立罗伦兹群的表示理论(苏联 盖尔芳特、诺伊玛克)。 1947年,创立统计的序贯分析法(美国 埃.瓦尔特)。
1948年,造成稳态机,能在各种变化的外界条件下自行组织,已达到稳定状态。鼓吹这是人造大脑的最初雏形、机器能超过人等观点(英国 阿希贝)。
1948年,出版《控制论》,首次使用控制论一词(美国 诺.维纳)。 1948年,提出通信的数学理论(美国 申农)。
1948年,总结了非线性微分方程在流体力学方面的应用,推进了这方面的研究(美籍德国人 弗里得里希斯、理 .柯朗)。
1948年,提出范畴论,是代数中一种抽象的理论,企图将数学统一于某些原理(波兰 爱伦伯克,美国 桑.麦克伦)。
1948年,将泛函分析用于计算数学(苏联 康脱洛维奇)。
1949年,开始确立电子管计算机体系,通称第一代计算机。英国剑桥大学制成第一台通用电子管计算机EDSAC。
1950年,发表《计算机和智力》一文,提出机器能思维的观点(英国 图灵)。
1950年,提出统计决策函数的理论(美国 埃.瓦尔特)。
1950年,提出解椭圆形方程的超松弛方法,是目前电子计算机上常用的方法(英国 大.杨)。
1950年,提出纤维丛的理论(美国 斯丁路特,美籍中国人 陈省身,法国 艾勒斯曼)。
............................................................
◇1951-1960年◇
1951年,五十年代以来,“组合数学”获得迅速发展,并应用于试验设计、规划理论、网络理论、信息编码等(美国 埃.霍夫曼、马.霍尔等)。
1952年,证明连续群的解析性定理(即希尔伯特第五问题)(美国 蒙哥马利等)。
1953年,提出优选法,并先后发展了多种求函数极值的方法(美国 基费等)。
1954年,发表《工程控制论》,系统总结自动控制理论的新发展(中国 钱学森)。
1955年,制定同调代数理论(法国 亨.加当、格洛辛狄克,波兰 爱伦伯克)。
1955年,提出求数值积分的隆姆贝方法,是目前电子计算机上常用的一种方法(美国 隆姆贝格)。
1955年,制定线性偏微分算子的一般理论(瑞典 荷尔蒙特等)。 1955年,提出解椭圆形或双线型偏微分方程的交替方向法(美国 拉斯福特等)。
1955年,解代数数的有理迫近问题(英国 罗思)。
1956年,提出统筹方法(又名计划评审法),是一种安排计划和组织生产的数学方法为美国杜邦公司首先采用。
1956年,提出线性规划的单纯形方法(英国 邓济希等)。
1956年,提出解双曲型和混合型方程的积分关系法(苏联 道洛尼钦)。
1957年,发现最优控制的变分原理(苏联 庞特里雅金)。
1957年,创立动态规划理论,它是研究使整个生产过程达到预期的最佳目的的一种数学方法(美国 贝尔曼)。
1957年,以美国康纳尔实验室的“感知器”的研究为代表,开始迅速发展图像识别理论(美国 罗森伯拉特等)。
1958年,创立算法语言ALGOL(58),后经改进又提出(ALGOL)(60),ALGOL(68)等算法语言,用于电子计算机程序自动化(欧洲GAMM小组,美国ACM小组)。
1958年,中国普遍地使用和改进“线性规划”法。
1958年,中国科学院计算机技术研究所试制成功中国第一架通用电子计算机。
1959年,美国国际商业机器公司制成第一台晶体管计算机“IBM7090”。第二代计算机——半导体晶体管计算机开始迅速发展。 1959—1960年,伽罗华域论在编码问题上的应用,发明BCH码(法国 霍昆亥姆,美国 儿.玻色,印度 雷.可都利)。
1960年,提出数字滤波理论,进一步发展了随机过程在制导系统中的应用(美国 卡尔门)。
1960年,建立非自共轭算子的系统理论(苏联 克雷因,美国 顿弗特)。
群论是什么难度的数学
群论
一般说来,群指的是满足以下四个条件的一组元素的集合:(1)封闭性 (2)结合律成立 (3)单位元存在 (4)逆元存在。群论是法国传奇式人物Golois的发明。他用该余岁理论解决了五次方程问题。今天,群论经常应用于物理领域。粗略地说,我们经常用群论来研究对称性,这些对称性能够反映出在某种变化下的某些变化量的性质。
在物理上,置换群是很重要的一类群。置换群包括S3群,二维旋转群,三维旋转群以及和反应四维时空相对应的洛仑兹群。洛仑兹群加上四维变换就构成了Poincare群。
在研究群时,使用表象而非群元是较方便的,因为群元一般来说都是抽象的事物。表象可以看成矩阵,而矩阵具有和群元相同的性质。不可约表象和单位表象是表象理论中的重要概念。
人们在寻找五次方程的解法中,一个新的数学分支--群论诞生了!
伽罗瓦是第一个使用群的系统地研究群的数学家。他在19岁时,就使用群的思想解次了五次方程的问题。
伽罗瓦1811年10月26日出生在法国巴黎一个小市镇上,他小时候和高斯正好相反,根本没有人认为他是"神童"。他的教师曾说伽罗瓦"没有智慧,不然就是把智慧藏得太深了,我没法去发现。"有的教师干脆说:"伽罗瓦什么也不懂。"其实伽罗瓦在中学时代就对数学表现了非凡的天赋。他从16岁起就致力于五次方程各五次以上方程的根式解法的研究。教科书满足不了人求知的欲望,他就直接深入学习和了解数学专著。前辈数学家勒让德的《几何原理》,拉格朗日的《论方程的代数解法》、《解析函数论》,欧拉和高斯等数学大师的著作使他乐而忘返。尤其是对同辈挪威数学家阿贝尔成果的研究,更直接影响了伽罗瓦群论思想的产生。阿贝尔是一位富于创造才能的数学家,当他还是中学生时就开始着手探讨高次方程的可解性问题。但命运不济,他写的关于椭圆函数的论文被巴黎科学院打入了冷宫,阿贝尔并没有放弃,终于又在不久以后发表论文证明了一般五次以上的代数方程,它们的根式解法是不存在的,只有某些竖逗睁特殊的五次以上的方程,可以用根式解法。阿贝尔的成果轰动了世界,使延续了3个世纪的五次方程难题解决了。但由于过于劳累,年仅278岁的阿贝尔就在贫病交加中逝世了。同时,也留下了问题给世人,究竟哪些方程可用根式解,哪些不能?完成这个艰巨指漏任务的就是伽罗瓦。
伽罗瓦17岁开始研究方程可解性问题,提出群的用于处理可解性问题,获得了重大成果。但他性格倔强,比阿贝尔更加生不逢时,3次把研究论文交法国科学院审查,都未能得到及时的肯定。不仅如此,由于伽罗致词热烈支持和参与法国"七月革命",人在进入巴黎高等师范学校的第一年就被开除学籍;之后又两次被抓进监狱,获释后的一个月,1832年5月31日,在和反动军官的决斗中,伽罗瓦被击中要害,第二天--1832年5月31日早晨,一颗数学新星殒落了。死时还不满21岁,决斗前夕,伽罗瓦把他的研究工作写成信件,托朋友转交《百科评论》杂志。
然而不幸的是,伽罗瓦的群论思想由于超越时代太远而未及时地被人们理解和接受,以致埋没了10年多,幸好手稿保存下来。1843年9月,法国数学家刘维尔重新整理了伽罗瓦的数学手稿,向法国科学院作了报告,并于1846年,在他自己办的数学杂志上发表了它,这才引起了数学界的注意。
数学家们在伽罗瓦群论思想的基础上,开始追踪、研究和发展,逐渐开创了一个新的数学分支--抽象代数学。它包括群论、环论域论、布尔代数等。
伽罗瓦是不幸的,生前他没有得到他应有的荣誉和地位。但人那颗被冷遇的倍爱创伤的心,却始终充满着对未来的热情、期待和对追求。
数学的来历(100字)
“数学”的由来
古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。 在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。
柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说:
故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。
柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点.
就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它粗猜希腊作品的翻译中才表现出来。数学作为一种有轮卖效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。
“数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”, “可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre 也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。
“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。
首先,亚岩桐型里士多德提出, “数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640?--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼·拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前500--?年)有一段名言:“万物都在运动中,物无常往”, “人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方法论的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。
对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元2世纪的拉丁作家格利乌斯(Gellius)和公元3世纪的希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。
这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔·培根(Roger Bacon,1214--1292年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(Descartes,1596--1650年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而20世纪的“符号”逻辑变成了热门的数理逻辑。
在18世纪,数学史的先驱作家蒙托克莱(Montucla)说,他已听说了关于古希腊人首先称数学为“一般知识”,这一事实有两种解释:一种解释是,数学本身优于其它知识领域;而另一种解释是,作为一般知识性的学科,数学在修辞学,辩证法,语法和伦理学等等之前就结构完整了。蒙托克莱接受了第二种解释。他不同意第一种解释,因为在普罗克洛斯关于欧几里得的评注中,或在任何古代资料中,都没有发现适合这种解释的确证。然而19世纪的语源学家却倾向于第一种解释,而20世纪的古典学者却又偏向第二种解释。但我们发现这两种解释并不矛盾,即很早就有了数学且数学的优越性是无与伦比的。
关于域论是谁发明的和域论基本定理的介绍到此就结束了,不知道你从中找到你需要的知识了吗?如果你还想了解更多百科问答相关的内容,记得收藏关注本站。
版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。
评论