数轴是谁发明的(数轴的发明发展历史)

百科问答网今天要给大家分享的是有关数轴是谁发明的的知识,希望对于各位朋友学习数轴的发明发展历史的过程中有帮助。

文章目录:

平面直角坐标系的由来是什么?

平面直角坐标系的由袜差迅来是、笛卡尔。

平面直角坐标系是由笛卡尔发明的,坐标系巧妙地把形与数联系在一起。

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系(Rectangular Coordinates)。

通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做x轴(x-axis)或横轴,垂直的数轴叫做y轴(y-axis)或纵轴,x轴y轴统称为坐标轴,它们的公共原点O称为直角告此坐标系的原点(origin)。

以点O为原点的平面直角坐标系记作平面直角坐标系xOy。

坐标分析

在平面“二维”内画两条互相垂直,并且有公共原点的数轴,简称直角坐标系。平书局面直角坐标系有两个坐标轴,其中横轴为x轴(x-axis)。

取向右方向为正方向;纵轴为y轴(y-axis),取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。

x轴y轴将坐标平面分成了四个象限(quadrant),右上庆手方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不在任何一个象限内。一般情况下,x轴y轴取相同的单位长平面直角坐标系度,但在特殊的情况下,也可以取不同的单位长度。

发明轴的人是谁?

你想了解的是数轴的发明人吗?

数轴:

发明数轴的是生于法国安德尔-卢瓦尔省图赖讷拉海的勒内·笛卡儿,1650年2月11日逝世于瑞典斯德哥尔摩,是法国著名的哲学家、数学家、物理学家。他是西方近代资产阶级哲学奠基人之一。 他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲世扒学思想的奠基人,是近代唯物论的开拓者且提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。笛卡儿最早提出的平面直角坐标系(也就是互相垂直的两条数轴),据说还有一段有趣的故事: 有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。

无论这个传说搜闷昌的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明罩尘笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。

直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。

笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。

把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。

恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。”

坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。

随着同学们知识的不断增加,坐标方法的应用会更加广泛。 仔细观察生活,你会发现数轴已经运用到我们生活当中的方方面面!

数轴上的实心点和空心点有什么区别

实心点表示包括本数,空心点表示不包括本数。

比如下面的图,两个不等号不同,就是3是实心点,所以用小于等于号。-2是空心点就不同。

扩展资料:

数轴

在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴燃庆(number line)。

数轴满足以下要求:

(1)在直线上任取一个点表示0这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向皮如握;

(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1(向右1个单位长度),2(向右2个单位长度),3(向右3个单位长度),…;从原点向左,用类似方法依次表示-1(向左1个单位长度),-2(向左2个单位长度)橡轮,-3(向左3个单位长度)…

在数轴上,除了数0要用原点表示外,要表示任何一个不为0的有理数,根据这个数的正负号确定它所在数轴的哪一边(通常正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上相应的点。

参考资料:数轴百度百科

坐标轴是谁发明的

不是谁发明的吧,应该是约定俗成。 额 ! 不过好像是他!!!!! 自古希腊以来,数学的发展形成两大主流:一支主流是几何,它研究图形及其变换,像点、直线、平面、三角形、多面体等等,都在它的研究之列;一支主流是代数,它研究数学(或是代表它们的字母)的运算,以及怎样解方程等等,像有理数、虚数、指数、对数、一元二次方程、方程组等等,都在它的研究之列。但是,在笛卡儿之前,这两大主流各管各地发展,彼此很少相关。笛卡儿企图在这两大主流之间“挖”一条“运河”,将它们沟通。 首先,他发明了“坐标系”,这是从一个原点出发互相垂直的两条数轴,一条X轴,另一条叫Y轴。有了这么一个简单的坐标系(严格讲来,这样的坐标系应称为”平面直角坐标系”)之后,如果平面上有一点,已知它到此平面坐标系的距离,那么这一点的位置就可以确定;反过来,如果平面上一点的位置已确定,那么这一点的位置就可以用它到坐标系的距离来表示。这样,笛卡儿应用坐标系建立了平面上的点和有顺序的实数对(一个表示X,一个表示Y)之间的一一对应关系,从而把几何研究的点与代数研究的数结合起来了。不仅如此,笛卡儿还用代数方程来描述几何图形,用几何图形来表示代数方程的计算结 是笛卡儿提出的平面直角坐标系 (也就是互相垂直的两条数轴)说中有这么一个故事: 有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较卜塌抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。 无论这个传说的可*性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。 直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图春盯形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。 笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩型森圆,也就可以把几何和代数挂上钩。 把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。 恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。” 坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。 随着同学们知识的不断增加,坐标方法的应用会更加广泛。 坐标系的发展历史 如果把坐标法理解为通过某一特定系统中的若干数量来决定空间位置的方法,那么战国时代魏人石申用距度(或入宿度)和去极度两个数据来表示恒星在天球上位置的星表,可以说是一种球面坐标系统的坐标法。古希腊的地理学家和天文学家也广泛地使用球面坐标法。西晋人裴秀(223-271)提出“制图六体”,在地图绘制中使用了相当完备的平面网络坐标法。 用坐标法来刻划动态的、连结的点,是它沟通代数与几何而成为解析几何的主要工具的关键。阿波罗尼在圆锥曲线论中,已借助坐标来描述曲线。十四世纪法国学者奥雷斯姆用“经度”和“纬度”(相当于纵坐标和横坐标)的方程来刻划动点的轨迹。十七世纪,费马和笛卡儿分别创立解析几何,他们使用的都是斜角坐标系:即选定一条直线作为X轴,在其上选定一点为原点,y的值则由那些与X轴成一固定角度的线段的长表示。 1637年笛卡儿出版了他的著作方法论,这书有三个附录,其中之一名为几何学,解析几何的思想就包含在这个附录里。笛卡儿在方法论中论述了正确的思想方法的重要性,表示要创造为实践服务的哲学。笛卡儿在分析了欧几里得几何学和代数学各自的缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法。这种方法就是几何与代数的结合----解析几何。按笛卡儿自己的话来说,他创立解析几何学是为了“决心放弃那仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练习思想的问题。我这样作,是为了研究另一种几何,即目的在于解释自然现象的几何”。关于解析几何学的产生对数学发展的重要意义,这里可以引用法国著名数学家拉格朗日的一段话:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力,从而以快速的步伐走向完善”。 十七世纪之后,西方近代数学开始了一个在本质上全新的阶段。正如恩格斯所指出的,在这个阶段里“最重要的数学方法基本上被确立了;主要由笛卡儿确立了解析几何,由耐普尔确立了对数,由莱布尼兹,也许还有牛顿确立了微积分”,而“数学中的转折点是笛卡儿的变量。有了它,运动进入了数学,因而,辩证法进入了数学,因而微分和积分的运算也就立刻成为必要的了”。恩格斯在这里不仅指出了十七世纪数学的主要内容,而且充分阐明了这些内容的重要意义。 解析几何学的创立,开始了用代数方法解决几何问题的新时代。从古希腊时起,在西方数学发展过程中,几何学似乎一直就是至高无上的。一些代数问题,也都要用几何方法解决。解析几何的产生,改变了这种传统,在数学思想上可以看作是一次飞跃,代数方程和曲线、曲面联系起来了。 最早引进负坐标的英国人沃利斯,最早把解析几何推广到三维空间的是法国人费马,最早应用三维直角坐标系的是瑞士人约翰 贝努利。“坐标”一词是德国人莱布尼兹创用的。牛顿首先使用极坐标,对于螺线、心形线以及诸如天体在中心力作用下的运动轨迹的研究甚为方便。不同的坐标系统之间可以互换,最早讨论平面斜角坐标系之间互换关系的是法国人范斯库腾。 我们今天常常把直角坐标系叫做笛卡儿坐标系,其实那是经过许多后人不断完善后的结果 参考资料:等等 28

求采纳

关于数轴是谁发明的和数轴的发明发展历史的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文

评论