本篇文章给大家谈谈方差是谁发明的,以及方差是什么时候的知识对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
文章目录:
- 1、概率统计历史
- 2、方差是谁发明的
- 3、什么是方差分析?
- 4、正交试验的极差分析与方差分析?
- 5、历史的丰碑三年游击战序列
概率统计历史
概率论发展史
概率论是一门研究随机现象规律的数学分支。其起源于十七世纪中叶,当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时 *** 数学家们首先思考概率论的问题,却是来自赌博者的问题。数学家费马向一法国数学家帕斯卡提出下列的问题:“现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A赢a局[a s],而赌徒B赢b局[b s]时,赌博中止,那赌本应怎样分才合理呢?”于是他们从不同的理由出发,在1654年7月29日给出了正确的解法,而在三年后,即1657年,荷兰的另一数学家惠根斯[1629-1695]亦用自己的方法解决了这一问题,更写成了《论赌博中的计算》一书,这就是概率论最早的论着,他们三人提出的解法中,都首先涉及了数学期望[mathematical expectation]这一概念,并由此奠定了古典概率论的基础。
使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布-伯努利[1654-1705]。他的主要贡献是建立了概率论中的第一个极限定理,我们称为“伯努利大数定理”,即“在多次重复试验中,频率有越趋稳定的趋势”。这一定理更在他死后,即1713年,发表在他的遗著《猜度术》中。
到了1730年,法国数学家棣莫弗出版其著作《分析杂论》,当中包含了著名的“棣莫弗—拉普拉斯定理”。这就是概率论中第二个基本极限定理的原始初形。而接着拉普拉斯在1812年出版的《概率的分析理论》中,首先明确地对概率作了古典的定义。另外,他又和数个数学家建立了关于“正态分布”及“最小二乘法”的理论。另一在颂春神野亏概率论发展史上的代表人物是法国的泊松。他推广了伯努利形式下的大数定律,研究得出了一种新的分布,就是泊松分布。概率论继他们之后,其中心研究课题则集中在推广和改进伯努利大数定律及中心极限定理。
概率论发展到1901年,中心极限定理终于被严格的证明了,及后数学家正利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从以正态分布。到了20世纪的30年代,人们开始研究随机过程,而著名的马尔可夫过程的理论在1931年才被奠定其地位。而苏联数学家柯尔莫哥洛夫在概率论发展史上亦作出了重大贡献,到了近代,出现了理论概率及应用概率的分支,及将概率论应用到不同范畴,从而开展了不同学科。因此,现代概率论已经成为一个非常庞大的数学分支。
概率论的历史
起源 概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。
16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Cardano)开始研究掷骰子等赌博中的一些简单问题。 概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。
随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。 概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。
发展 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中,同时这也大大推动了概率论本身的发展。 使概率论成为数学的一个分支的奠基人是瑞士数学家伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。
随后棣莫弗和拉普拉斯又导出了第 二个基本极限定理(中心极限定理)的原始形式。 拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。
19世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数森雀定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。 20世纪初受物理学的 *** ,人们开始研究随机过程。
这方面柯尔莫哥洛夫、维纳、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。 扩展资料 概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的。 在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。 随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
参考资料:百度百科-概率论。
概率的历史故事
概率的历史:
第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作《Liber de Ludo Aleae》中。书中关于概率的内容是由Gould从拉丁文翻译出来的。
卡尔达诺的数学著作中有很多给赌徒的建议。这些建议都写成短文。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。
这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。Chevvalier de Mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰子问题和比赛奖金分配问题。
概率是度量偶然事件发生可能性的数值。假如经过多次重复试验,偶然事件出现了若干次(。以X作分母,Y作分子,形成了数值。
在多次试验中,P相对稳定在某一数值上,P就称为A出现的概率。如偶然事件的概率是通过长期观察或大量重复试验来确定,则这种概率为统计概率或经验概率。
扩展资料:
随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。
另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。
R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。
参考资料来源:百度百科—概率
概率的历史故事
概率的历史: 第一个系统地推算概率的人是16世纪的卡尔达诺。
记载在他的著作《Liber de Ludo Aleae》中。书中关于概率的内容是由Gould从拉丁文翻译出来的。
卡尔达诺的数学著作中有很多给赌徒的建议。这些建议都写成短文。
然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。 这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。
Chevvalier de Mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰子问题和比赛奖金分配问题。
概率是度量偶然事件发生可能性的数值。假如经过多次重复试验,偶然事件出现了若干次(。
以X作分母,Y作分子,形成了数值。 在多次试验中,P相对稳定在某一数值上,P就称为A出现的概率。
如偶然事件的概率是通过长期观察或大量重复试验来确定,则这种概率为统计概率或经验概率。 扩展资料: 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。
另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。 R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。
从理论上讲,概率的频率定义是不够严谨的。 参考资料来源:百度百科—概率。
跪求概率论19到20世纪发展史,在线等
概率论是研究随机现象数量规律的数学分支。
随机现象是指这样的客观现象,当人们观察它时,所得的结果不能预先确定,而只是多种可能结果中的一种。在自然界和人类社会中,存在着大量的随机现象。
例如,掷一硬币,可能出现正面或反面;测量一物体长度,由于仪器及观察受到环境的影响,每次测量结果可能有差异;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐;等等。这些都是随机现象。
随机现象的实现和对它的观察称为随机试验,随机试验的每一可能结果称为一个基本事件,一个或一组基本事件又通称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中发生某个事件是带有偶然性的,但那些可以在相同条件下大量重复的随机试验却往往呈现出明显的数量规律性。人们在长期实践中已逐步觉察到某些这样的规律性,并在实际中应用它。
例如,连续多次掷一均匀的硬币,出现正面的频率(出现次数与投掷次数之比)随着投掷次数的增加逐渐稳定于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的近旁,越远则越少,因之其分布状况呈现“中间大、两头小”及某种程度的对称性(即近似于正态分布)。
大数律及中心极限定理就是描述和论证这些规律性的。在实际中,人们往往还需要研究在时间推进中某一特定随机现象的演变情况,描述这种演变的就是概率论中的随机过程。
例如,某一电话交换台从一确定时刻起到其后的每一时刻为止所收到的呼唤次数便是一随机过程。又如,微小粒子在液体中因受周围分子的随机碰撞而形成不规则的运动(即布朗运动)也是一随机过程。
研究随机过程的统计特性,计算与过程有关的某些事件的概率,特别是研究与过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。总之,概率论与实际有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。
概率论还是数理统计学的理论基础。 发展简史 概率论有悠久的历史,它的起源与博弈问题有关。
16世纪,意大利的一些学者开始研究掷骰子等赌博中的一些简单问题,例如比较掷两个骰子出现总点数为9或10的可能性大小。17世纪中叶,法国数学家b.帕斯卡、p. de.费马及荷兰数学家c.惠更斯基于排列组合的方法(见组合数学)研究了一些较复杂的赌博问题,他们解决了“合理分配赌注问题”(即“得分问题”,见概率)、“输光问题”等等。
其方法不是直接计算赌徒赢局的概率,而是计算期望的赢值,从而导致了现今称之为数学期望的概念(由惠更斯明确提出)。使概率论成为数学的一个分支的真正奠基人则是瑞士数学家雅各布第一·伯努利,他建立了概率论中第一个极限定理,即伯努利大数律;该定理断言:设事件a的概率p(a)=p(0概率,应理解为事件发生的机会的一个测度,即公理化概率测度(详见后)。
1716年前后,a.棣莫弗对p =1/2情形,用他导出的关于n!的渐近公式(,即所谓斯特林公式)进一步证明了 渐近地服从正态分布(德国数学家c.f.高斯于1809年研究测量误差理论时重新导出正态分布,所以也称为高斯分布)。棣莫弗的这一结果后来被法国数学家p.-s.拉普拉斯推广到一般的p(0概率论中第二个基本极限定理(见中心极限定理)的原始形式。
拉普拉斯对概率论的发展贡献很大。他在系统总结前人工作的基础上,写出了《概率的分析理论》(1812年出版,后又再版6次)。
在这一著作中,他首次明确规定了概率的古典定义(通常称为古典概率,见概率),并在概率论中引入了更有力的分析工具,如差分方程、母函数等,从而实现了概率论由单纯的组合计算到分析方法的过渡,将概率论推向一个新的发展阶段。拉普拉斯非常重视概率论的实际应用,对人口统计学尤其感兴趣。
继拉普拉斯以后,概率论的中心研究课题是推广和改进伯努利大数律及棣莫弗-拉普拉斯极限定理。在这方面,俄国数学家∏.Л.切比雪夫迈出了决定性的一步,1866年他用他所创立的切比雪夫不等式建立了有关独立随机变量序列的大数律。
次年,又建立了有关各阶绝对矩一致有界的独立随机变量序列的中心极限定理;但其证明不严格,后来由a.a.马尔可夫于1898年补证。1901年Α.М.李亚普诺夫利用特征函数方法,对一类相当广泛的独立随机变量序列,证明了中心极限定理。
他还利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。继李亚普诺夫之后,Α.Я.辛钦、Α.Η.柯尔莫哥洛夫、p.莱维及w.费勒等人在随机变量序列的极限理论方面作出了重要贡献。
到20世纪30年代,有关独立随机变量序列的极限理论已臻完备。在此期间,由于实际问题的需要,特别是受物理学的 *** ,人们开始研究随机过。
统计学的发展史是什么
“统计”一词,英语为statistics,用作复数名词时,意思是统计资料,作单数名词时,指的是统计学。
一般来说,统计这个词包括三个含义:统计工作、统计资料和统计学。这三者之间存在着密切的联系,统计资料是统计工作的成果,统计学来源于统计工作。
原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,还是从17世纪开始的。英语中统计学家和统计员是同一个(statistician),但统计学并不是直接产生于统计工作的经验总结。
每一门科学都有其建立、发展和客观条件,统计科学则是统计工作经验、社会经济理论、计量经济方法融合、提炼、发展而来的一种边缘性学科。 1,关于单词statistics 起源于国情调查,最早意为国情学。
十 七世纪,在英格兰人们对“政治算术”感兴趣。1662年,John Graunt发表了他第一本也是唯一一本手稿,《natural and politics observations upon the bills of mortality》, 分析了生男孩和女孩的比例,发展了现在保险公司所用的那种类型的死亡率表。
英文的statistics大约在十八世纪中叶由德国学者 Gottfried Achenwall所创造,是由状态status和德文的政治算术联合推导得出的,第一次由John Sinclair所使用,即1797年出现在Encyclopaedia Britannica。(早期还有一个单词publicitics和statistics竞争“统计”这一含义,如果得胜,现在就开始流行 publicitical learning了)。
2,关于高斯分布或正态分布 1733年,德-莫佛(De Moivre)在给友人分发的一篇文章中给出了正态曲线(这一历史开始被人们忽略) 1783年,拉普拉斯建议正态曲线方程适合于表示误差分布的概率。 1809年,高斯发表了他的关于天体运行论的伟大著作,在这一著作的第二卷第三节中,他导出正态曲线适宜于表示误差规律,同时承认拉普拉斯较早的推导。
正态分布在十九世纪前叶因高斯的工作而加以推广,所以通常称作高斯分布。卡尔-皮尔逊指出德-莫佛是正态曲线的创始人,第一个称它为正态分布,但人们仍习惯称之高斯分布。
3,关于最小二乘法 1805年,Legendre提出最小二乘法,Gauss声称自己在1794年用过,并在1809年基于误差的高斯分布假设,给出了严格推导。 4,其它 在十九世纪中叶,三个不同领域产生的重要发展都是基于随机性是自然界固有的这个前提上的。
阿道夫·凯特莱特(A. Quetlet,1869)利用概率性的概念来描述社会学和生物学现象(正态曲线从观察误差推广到各种数据) 孟德尔(G.Mendel,1870)通过简单的随机性结构公式化了他的遗传法则 玻尔兹曼(Boltzmann,1866)对理论物理中最重要的基本命题之一的热力学第二定律给出了一个统计学的解释。 1859 年,达尔文发表了《物种起源》,达尔文的工作对他的表兄弟高尔登爵士有深远影响,高尔登比达尔文更有数学素养,他开始利用概率工具分析生物现象,对生物计 量学的基础做出了重要贡献(可以称他为生物信息学之父吧),高尔登爵士是第一个使用相关和回归这两个重要概念的人,他还是中位数和百分位数这种概念的创始 人。
受高尔登工作影响,在伦敦的大学学院工作的卡尔-皮尔逊开始把数学和概率论应用于达尔文进化论,从而开创了现代统计时代,赢得了统计之父的称号,1901年Biometrika第一期出版(卡-皮尔逊是创始人之一)。 5,关于总体和样本 在早期文献中可找到由某个总体中抽样的明确例子,然而从总体中只能取得样本的认识常常是缺乏的。
----K.皮尔逊时代 到十九世纪末,对样本和总体的区别已普遍知道,然而这种区分并不一定总被坚持。----1910年Yule在自己的教科书中指出。
在 1900年代的早期,区分变的更清楚,并在1922年被Fisher特别强调。----Fisher在1922年发表的一篇重要论文中《On the mathematical foundation of theoretical statistics》,说明了总体和样本的联系和区别,以及其他概念,奠定了“理论统计学”的基础。
6,期望、标准差和方差 期望是一个比概率更原始的概念,在十七世纪帕斯卡和费马时代,期望概念已被公认了。K.皮尔逊最早定义了标准差的概念。
1918年,Fisher引入方差的概念。 力学中的矩和统计学中的中数两者之间的相似性已被概率领域的早期工作者注意到,而K.皮尔逊在1893年第一次在统计意义下使用“矩”。
7,卡方统计量 卡方统计量,是卡-皮尔逊提出用于检验已知数据是否来自某一特定的随机模型,或已知数据是否与已给定的假设一致。卡方检验被誉为自1900年以来在科学技术所有分支中20个尖端发明之一,甚至敌人Fisher都对此有极高评价。
8,矩估计与最大似然 卡-皮尔逊提出了使用矩来估计参数的方法。 Fisher则在1912年到1922年间提出了最大似然估计方法,基于直觉,提出了估计的一致性、有效性和充分性的概念。
9,概率的公理化 1933年,前苏联数学家柯尔莫格洛夫(Kolmogorov)发表了《概率论的基本概念》,奠定了概率论的严格数学基础。 10,贝叶斯定理 贝叶斯对统计学几乎没有什么贡献,然而贝叶斯的一篇文章成为贝叶斯学派统计学的思想模式的焦点,这一篇文章发表于1763年,由贝叶斯的朋友、著名人寿保险原理的开拓者Richard Pri。
方差是谁发明的
ALLAN方差是阿兰发明的,在惯性导航中应用及其广泛,这篇论文在陀螺数据处理方面具有很好的方法
什么是方差分析?
方差分析也叫F检验,这个F就是计算出来的F值,用来评估组间差异。F值表没州示整个拟合方程的显著,隐嫌F越大,表示方程越显著,拟合程度也就越好
P值是衡量控制组与实验组差异大小的指标,*意思是P值小于.05,表示两组存在显著差异,**意思是P值小于.01,表示两组的差异极其显著,这个可以用SPSS统计。P值表示不拒绝原假设的程度。灶察手简而言之,P表示假设更可能是正确的,反之则可能是错误的。
拓展资料:
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
资料链接:百度百科--方差分析
正交试验的极差分析与方差分析?
这个可以在spssau中完成:
比如做三因子三水平的交互正交表,选项因子个数选择3,水平个数也族埋是3,点击“开始分析”,即可。
得到试验结果后,将试验数据填入表格,上传到SPSSAU系统中。可以用SPSSAU【乎穗掘通用方法】--【方差】,以及岁核【实验/医学研究】--【极差分析】进行分析。
历史的丰碑三年游击战序列
1.东北抗日和三年游击战及长征被称为什么
红军长征,从瑞金出发时8.6万人,在湘江突破四道防锁线就只剩下3万人,包括其他根据地在内的红军,在陕北会师后,也不过三万人左右。
南方三年游击战争,比土匪都不如,无时无刻不在面临着清剿,没有后方,没有物资,南方八省游击队基本各自为战,势力都不大,部队规模都仅在千人左右,能坚持下来算是奇迹了。东北抗联的抗日活动是在敌人的势力范围内,最主要的是东三省被日本占领很久了,经营多年,日本最精锐的关东军就驻扎在那里,东北抗联基本算是在敌人内部孤军作战,牺牲很大,主要起到的就是牵制日军主力。
红军长征,南方三年游击战争,东北抗联的抗日活动,都是在族卖孤立无援的情况下,与敌人主力进行战斗,牺牲之巨大,战斗之艰苦,陆含意志之坚定,实属罕见。
2.数据结构问题 给出如下关键字序列321,156,57,46,28,7,331,33,3
初始序列:321, 156, 057, 046, 028, 007, 331, 033, 034, 063
第一趟按个位分配到各个队列,收集后的结果:
028, 057, 007, 156, 046, 034, 033, 063, 321, 331
第二趟按十位分配到各个队列,收集后的结果:
063, 057, 156, 046, 034, 033, 331, 028, 321, 007
第三趟按百位分配到各个队列,收集后的结果:
331, 321, 156, 063, 057, 046, 034, 033, 028, 007
排序完成
3.
1.一个算法的时间复杂度为(3n2+2nlog2n+4n-7)/(5n),其数量级表示为 O(n) .2.A,B,C三个结点为线性链表的相邻结点,P指针指向A结点,写出将B,C结点交换位置的操作序列: , , , .3.输入序列为ABCDE,通过一个堆栈,不可能得到的输出序列有 CDEAB ,DCEAB, DECAB, EDCAB等.4.树(A(B(E(K),F),C(G),D(H,I,J(M)))转化成二叉树后,其二叉树中序遍历次序为 KEFBAGCHIMJD .5.在一棵二叉树中,假定度为2的结点有5个,度为1的结点有6个,则叶子结点数有 6 个. 6.对于一个具有 n个顶点和e条边的无向连通图,其生成树中的边数为 n-1 . 7.广义表中的元素可分为单元素和 子表两种. 8.假定对长度为n=21的有序表进行折半查找,则对应的判定树高度为 6 . 9.在无向图G的邻接矩阵A中,若A[i][j]等于1,则A[j][i] 等于 1 . 10.要将序列{50,16,23,68,94,70,73}建成堆,只需把16与 50 相互交换.。
4.中国历史最早发明游击战的是谁
公元前512年的吴楚之战中,就有游击性质的作战行动。相传为黄帝风后撰写的《握奇经》认为:“游军之形,乍动乍静,避实击虚,视赢挠盛,结陈趋地,断绕四经。”对游击部队的作战行动,作了生动的描述。
而在史书中记载的第一个详细使用游击战战术的人是楚汉时期汉的大将彭越。
彭越,西汉开国功臣、著名将领,秦末聚兵起义,初在魏地起兵,后率兵归刘邦,拜魏相国、建成侯,与韩信、英布并称汉初三大名将,西汉建立后封为梁王。后因被告发谋反,被刘邦以“反形已具”的罪名诛杀三族,枭首示众。
5.回答:⑴随机时间序列的平稳性条件是什么
⑴ 随机时间序列{ }(t=1,2,…)的平稳性条件是:1)均值 ,是与时间t 无关的常数;2)方差 ,是与时间t 无关的常数;3)协方差 ,只与时期间隔k有关,与时间t 无关的常数.对于随机游走序列 ,假设 的初值为 ,则易知由于 为一常数,是一个白噪声,因此 ,即 的方差与时间t有关而非常数,所以它是一非平稳序列.⑵ 在采用DF检验对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程(AR(1))生成的.但在实际早穗笑检验中,时间序列可能是由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关,导致DF检验无效.另外,如果时间序列包含有明显的随时间变化的某种趋势(如上升或下降),则也容易导致DF检验中的自相关随机误差项问题.为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF检验.。
6.丰碑的阅读答案
参考答案:
1①回想长城的战争历史 ②遗憾长城的惨遭践踏
2.①运用议论、抒情的句子,作者评价了长城的伟大,由此引发了民族自豪感。(2分)
②写出了长城愿意接受异域殊方的开放精神、能承受开放冲荡的自信。(2 分)
3.本文使用第二人称“你”来称呼长城,把长城拟人化,如同与一位老者面对面交谈,娓娓道来。对历史中的长城做出评价: “你是一卷凄婉的历史”“你又是民族封闭的象征”“你是一个文化愚钝的标志”;又谈了对现实中长城的看法,“现在你敞开胸襟了”,认为中华民族只有放眼世界才能不断发展,显示了民族自豪感。用第二人称体现了作者对长城认知的不断变化,便于作者直接抒情。
关于方差是谁发明的和方差是什么时候的知识的介绍到此就结束了,不知道你从中找到你需要的知识了吗?如果你还想了解更多百科问答相关的内容,记得收藏关注本站。
版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。