埃及数学是谁发明发明的(数学史之埃及数学)

今天给各位分享埃及数学是谁发明发明的的知识,其中也会对数学史之埃及数学进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

文章目录:

数学的起源人是谁?

是古埃及人,目前我们对古埃及数学的认识,主要源于两份用僧侣文写成的纸草书,其一是成书于公元前1850年左右的莫斯科纸草书,另一份是约成书于公元前1650年的兰德(Rhind)纸草书,又称阿梅斯(Ahmes)纸草书。阿梅斯纸草书的内容相当丰富,讲述了埃及的乘法和除法、单位分数的用法、试位法、求圆面积问题的解和数学在许多实际问题中的应用。

古埃及人使用象形文字,其数字以十进制表示,但并非位值制,而分数还有一套专门的记法。由埃及数系建立起来的算术具有加法特征,其乘、除法的计算也只是利用连续加倍的方法来完成。古埃及人将所有的分数都化成单位分数(分子为 1的分数之和),在阿梅斯纸草书中,有很大一张分数表,把2/(2n+1)状分数表示成单位分数之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+

1/776,等等。

古埃及人已经能解决一些属于一次方程和最简单的二次方程的问题,还有一些关于等差数列、等比数列的初步知识。喊亮物

如果说巴比伦人发展了卓越的算术和代数学,那么在另一方面,人们一般认为埃及人在几何学方面要胜过巴比伦人。一种观点认为尼罗河水每年一键旁次的定期泛滥,淹没河流两岸的谷地。大水过后,法老要重新分配土地,长期积累起来的土地测量知识逐渐发展为几何学。

埃及人能够计算简单平面图形的面积,计算出的圆周率为 3.16049;他们还知郑液道如何计算棱椎、圆椎、圆柱体及半球的体积。其中最惊人的成就在于方棱椎平头截体体积的计算,他们给出的计算过程与现代的公式相符。

至于在建造金字塔和神殿过程中,大量运用数学知识的事实表明,埃及人已积累了许多实用知识,而有待于上升为系统的理论。

古埃及数学从什么时代开始由二进制进步为十进制??

大约距今五千年左右,人类历史上开始先后出现一些不同的书写记数方法(数字的产生)。随之逐步形成各种较为成熟的记数系统。如古埃及的象形数字(公元前3400年左右)、古巴比伦的楔(xie)形数字(公元前2400年左右)、中国的甲骨文数字(公元前1600年左右)以及中美洲的玛雅数字(约公元前1000年左右)。到公元前500年左右,人类关于书写记拍陆数的方法已经发展得相当完善,如古希腊数字、古罗马数字、中国的算筹数码。

在这些记数系统中,除了巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系。由中国掘贺塌人首创的十进位值制记数法,对人类文明尤其是判圆一项特殊贡献。记数系统的出现使数与数之间的书写运算成为可能,在此基础上初等算术便在几个古老的文明地区发展起来。

。。。。。。。。。

古埃及数学从什么时代开始使用二进制的?

最早发明数学的人是谁

数学是研究现实世界空间形式和数量关系的一门科学。它包括算术、代数、几何、三角、解析几何、微积分等等。小学数学是指算术和简易代数及几何初步知识。

数学科学伴随着人类社会做滑的发展,也有它自身发展的历程。前苏联科学院院士A·H·柯尔莫戈洛夫曾把数学发展史划分为四个阶段:第一个阶段的前期产生自然数概念、计算方法和简单的几何图形,后期出现数的写法、数的算术运算、某些几何图形的运用,解答简单的代数题目;第二个阶段逐渐形成了初等数学的分支,即算术、代数、几何、灶吵三角;第三个阶段建立了解析几何、微积分、概率论等学科;第四个阶段出现计算机学科,以及应用数学的众多分支、纯数学的若干问题的重大突破等。

我国数学在世界数学发展史上,有它卓越的贡献。早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。

在新石器时期的彩陶钵上,有多种刻画符号,其中丨、、隐胡侍、×、+等,很可能是我国最早的记数符号。产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量工具。《前汉书·律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。

春秋战国时期,学术繁荣,产生了相当精彩和可贵的数学思想;公元前6世纪,已经有了关于简单体积和比例分配问题的算法,在《考工记》中记载了分数和角度的资料;到秦始皇时,统一了度量衡,并且基本上采用了十进制的度量单位,在《墨经》中提出了几何名词的定义和几何命题等。《杜忠算术》和《许商算术》是最早的数学专著,但这两部书都失传了。至今仍保留的古代数学专著是《算数书》,全书共有60多个小标题、90多个题目,书中内容涉及了整数和分数的四则运算、比例问题、面积和体积问题等、并且含有“合分”、“少广”等数学思想

数学的来历(100字)

“数学”的由来

古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。 在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。

柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说:

故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。

柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点.

就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它粗猜希腊作品的翻译中才表现出来。数学作为一种有轮卖效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。

“数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”, “可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre 也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。

“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。

首先,亚岩桐型里士多德提出, “数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640?--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼·拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前500--?年)有一段名言:“万物都在运动中,物无常往”, “人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方法论的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。

对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元2世纪的拉丁作家格利乌斯(Gellius)和公元3世纪的希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。

这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔·培根(Roger Bacon,1214--1292年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(Descartes,1596--1650年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而20世纪的“符号”逻辑变成了热门的数理逻辑。

在18世纪,数学史的先驱作家蒙托克莱(Montucla)说,他已听说了关于古希腊人首先称数学为“一般知识”,这一事实有两种解释:一种解释是,数学本身优于其它知识领域;而另一种解释是,作为一般知识性的学科,数学在修辞学,辩证法,语法和伦理学等等之前就结构完整了。蒙托克莱接受了第二种解释。他不同意第一种解释,因为在普罗克洛斯关于欧几里得的评注中,或在任何古代资料中,都没有发现适合这种解释的确证。然而19世纪的语源学家却倾向于第一种解释,而20世纪的古典学者却又偏向第二种解释。但我们发现这两种解释并不矛盾,即很早就有了数学且数学的优越性是无与伦比的。

关于埃及数学是谁发明发明的和数学史之埃及数学的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文

评论