最小二乘算法是谁发明的(最小二乘法是谁发现的)
今天给各位分享最小二乘算法是谁发明的的知识,其中也会对最小二乘法是谁发现的进行解释,如果未能解决您的问答,可在评论区留言!
文章目录:
统计学ols方法的原理
普通最小二乘法(OLS)方法的原理是:
利用最小二乘法可以简便地求得未知的数据,并使得所选择的回归模型应该使所有观察值的残差平方和达到最小。具体验证如下:
样本回归模型:
其中ei为样本(Xi,Yi)的误差。
平方损失函数:
则通过Q最小确定这条直线,即确定β0和β1,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:
根据数学知识我们知道,函数的极值点为偏导为0的点。
解得:
这就是最小二乘法的解法,就是求得平方损失函数的极值点。
扩展资料
最小二乘法来源于19世纪意大利天文学家朱赛普·皮亚齐的一次发现,后由勒让德或高斯发明。
1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
法国科学家勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。
参考资料来源:百度百科-最小二乘法
计量经济学中, 简述普通最小二乘法的基本思想
普通最小二乘法是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
∑(X--X平)(Y--Y平)
=∑(XY--X平Y--XY平+X平Y平)
=∑XY--X平∑Y--Y平∑X+nX平Y平
=∑XY--nX平Y平--nX平Y平+nX平Y平
=∑XY--nX平Y平
∑(X --X平)^2
=∑(X^2--2XX平+X平^2)
=∑X^2--2nX平^2+nX平^2
=∑X^2--nX平^2
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
法国科学家勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。
ols, gls, fgls和wls的区别是什么?
ols,gls,fgls和wls的区别有计算方法、概念、回归模型等的区别。
一、方法上的区别
GLS是(广义最小二乘估计量)是一种常见的消除异方差的方法.它的主要思想是为解释变量加上一个权重,从而使得加上权重后的回归方程方差是相同的.
因此在GLS方法下我们可以得到估计量的无偏和一致估计,并可以对其进行OLS下的t检验和F检验。
二、概念上的区别
OLS是最小二乘法,用于一元或多元回归,其基本思想是min Q=∑(Yi-β0-β1Xi);
FGLS又称可行的GLS,用于解决当异方差函数未知的情况下采用的方法;
WLS是加权最小估计量,当方差函数已知的情况下用于矫正异方差性的GLS估计量,其思想是,对误差方差越大的观测赋予越小的权数,而在OLS中每个观测的权数一样。;
在线性条件下,OLS是GLS的一种特殊形式。具体说,GLS修正了线性模型随机项的异方差和序列相关问题!在没有异方差和序列相关情形下,GLS=OLS。
三、回归模型上的区别
在高-马经典假设下,回归模型叫ordinaryregressionmodel,我们知道,在此条件下,得到的OLS是BLUE的,但这个假定更现实的是如二楼所说的放宽同方差的假定,此时的回归模型是generalizedregressionmodel在这种模型里,如果varience-covariencematrix是已知的,则GLS可行,这就是我们书上常看到的FGLS。
但如果varience-covariencematrix是不知道的,则我们需要估计出varience-covariencematrix,进而得到FGLS,但此时的估计量是一致的渐近有效的估计量。另外,我们常看到的WLS实际就是FGLS,因而是blue的,但是并不是所有的FGLS都是blue的。
以上就是ols,gls,fgls和wls计算方法、概念、回归模型的区别。
扩展资料
最小二乘法历史与发展过程:1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法与1809年他的著作《天体运动论》中,勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。
参考资料来源:百度百科--计量经济学
最小二乘法是什么意思啊?
是想让拟合的直线方程与实际的误差最小。
由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。如果用误差的绝对值来计算的话,那应该好一些。
但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了。
最小二乘算法是谁发明的的介绍就聊到这里啦,感谢您花时间阅读本站内容,更多关于最小二乘法是谁发现的、最小二乘算法是谁发明的的信息别忘了在本站进行查找喔。
版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。
评论