圆的面积中的派是谁发明的(圆的面积公式是谁最早得出的)
本篇文章给大家谈谈圆的面积中的派是谁发明的,以及圆的面积公式是谁最早得出的对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
文章目录:
圆面积的公式是谁想出来的?
祖冲之(ZǔChōngzhī ,公元429年—公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。先世迁入江南,祖父掌管土木建筑,父亲学识渊博。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山县东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.1415926(朒数)和3.1415927(盈数)之间,相当于精确到小数第7位,成为当时世界上最先进的成就。这一纪录直到15世纪才由阿拉伯数学家卡西打破。祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在天文历法方面,祖冲之创制了《大明历》,最早将岁差引进历法;采用了391年加144个闰月的新闰周;首次精密测出交点月日数(27.21223),回归年日数(365.2428)等数据,还发明了用圭表测量冬至前后若干天的正午太阳影长以定冬至时刻的方法。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,他在音律、文学、考据方面也有造诣,他精通音律,擅长下棋,还写有小说《述异记》。是历史上少有的博学多才的人物。
为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”。
祖冲之通过艰苦的努力,他在世界数学史上第一次将圆周率(Л)值计算到小数点后七位,即3.1415926到3.1415927之间。他提出约率22/7和密率355/113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”。他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。他编制的《大明历》,第一次将“岁差”引进历法。提出在391年中设置144个闫月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。他不仅是一位杰出的数学家和天文学家,而且还是一位杰出的机械专家。重新造出早已失传的指南车、千里船等巧妙机械多种。此外,他对音乐也有研究。著作有《释论语》、《释孝经》、《易义》、《老子义》、《庄子义》及小说《述异记》等,均早已遗失.
数学中π是谁发明的?
刘徽。
我国古代数学家对圆周率方面的研究工作,成绩是突出的.早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。
祖冲之是和他儿子一起从事这项研究工作的,当时条件很差.他们在一间大屋的地上画了一个直径1丈的大圆.从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样.接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。
祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位.其近似分数是 355/113,被称为"密率".德国数学家奥托在1573年重新得出这个近似分数.当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。
后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率".日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对。
拓展资料:
圆周率是怎么计算出来的?
在半径为r的圆中,作一个内接正六边形.这时,正六边形的边长等于圆的半径r,因此,正六边形的周长等于6r.如果把圆内接正六边形的周长看作圆的周长的近似值,然后把圆内接正六边形的周长与圆的直径的比看作为圆的周长与圆直径的比,这样得到的圆周率是3,显然这是不精确的。
我们就得到了一种计算圆周率π的近似值的方法。
早在一千七百多年前,我国古代数学家刘徽曾用割圆术求出圆周率是3.141024.继刘徽之后,我国古代数学家祖冲之在推求圆周率的研究方面,又有了重要发展.他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;另一个是(nǜ)数(即不足的近似值),为3.1415926。
圆周率的真值正好在盈两数之间.祖冲之还采用了两个分数值:一个是22/7(约等于3.14),称之为“约率”;另一个是355/113(约等于3.1415929),称之为“密率”.祖冲之求得的密率,比外国数学家求得这个值,至少要早一千年。
⑴ 2∕π=√2∕2*√(2+√2)∕2*√(2+√(2+√2))∕2……
⑵ π∕2=2*2*4*4*6*6*8*8……∕(1*3*3*3*4*5*5*7*7……)
⑶ π∕4=4arctg(1∕5)-arctg(1∕239) (注:tgx=…………)
⑷ π=426880√10005∕(∑((6n)!*(545140134n+13591409))
∕((n!)*(3n)!*(-640320)^(3n)))
(0≤n→∞)
π是怎么算出来的?请问各位大师
“π”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。
我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。
π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。
扩展资料
π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
65年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
参考资料:百度百科——圆周率
数学中的派“π”到底是怎样得来的?它的具体作用是什么?
圆周率(π,读作pài)是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。[6]汉朝时,张衡得出,即(约为3.162)。这个值不太准确,但它简单易理解。[7]公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率。
公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率和约率。密率是个很好的分数近似值,要取到才能得出比略准确的近似。[8](参见丢番图逼近)
在之后的800年里祖冲之计算出的π值都是最准确的。其中的密率在西方直到1573年才由德国人奥托(Valentinus Otho)得到,1625年发表于荷兰工程师安托尼斯(Metius)的著作中,欧洲称之为Metius' number。
约在公元530年,印度数学大师阿耶波多算出圆周率约为√9.8684。婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
π是谁发明出来的?
圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比值。它圆周率π也等于圆形之面积与半径平方之比值。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学上,π可以严格地定义为满足sin(x) = 0的最小正实数x。2011年6月部分学者认为圆周率定义不合理,要求改为6.28。
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉从一七三六年开始,在书信和论文中都用π来表示圆周率。因为他是大数学家,所以人们也有样学样地用π来表示圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。π=Pai(π=Pi)古希腊欧几里德《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数[1]。
历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取pi=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))π(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.14)。
折叠编辑本段发展历史
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论π计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),得出圆周率π应该介于3.1315926和3.1415927之间,还得到两个近似分数值,密率355/113和约率22/7(分子/分母)。他的辉煌成就比欧洲至少早了近千年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
相关教学电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。
而如今计算机高速发展,人们虽然已经知道π是一个无理数,而且已经计算得越来越精准,而人们不管是工程测量、数学解题过程中,大部分都取前两位数,就是π≈3.14,也产生了圆周率日(3月14日)。
折叠编辑本段各国发展
在历史上,有不少数学家都对圆周率做出过研究,当中著名的有阿基米德(Archimedes ofSyracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
折叠亚洲
中国,最初在《周髀算经》中就有“径一周三”的记载,取π值为3。
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。
印度,约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。
折叠欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535π3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
(阿基米德,前287-212,古希腊数学家,从单位圆出发,先用内接六边形求出圆周率的下界是3,再用外接六边形结合勾股定理求出圆周率的上限为4,接着对内接和外界正多边形的边数加倍,分别变成了12边型,直到内接和外接96边型为止。最后他求出上界和下界分别为22╱7和223╱71,并取他们的平均值3.141851为近似值,用到了迭代算法和两数逼近的概念,称得算是计算的鼻祖。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
折叠
π是谁发明出来的
秦汉以前,人们以径一周三做为圆周率,这就是古率.后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--割圆术,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.
刘徽(约公元225年-295年),汉族,山东滨州邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.
圆的面积中的派是谁发明的的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于圆的面积公式是谁最早得出的、圆的面积中的派是谁发明的的信息别忘了在本站进行查找喔。
版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。