分数分数线是谁发明的(分数线是谁人发明)

今天给各位分享分数分数线是谁发明的的知识,其中也会对分数线是谁人发明进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

文章目录:

分数线哪国人发明的 A阿拉伯人B印度人c中国人

意大利人。比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),意大利数学家,西方第一个研究斐波那契数,并将现代书写数和乘数的位值表示法系统引入欧洲。也是分数线的创始人。

扩展资料

比萨的列奥纳多,又称斐波那契。

列奥纳多曾成为热爱数学和科学的腓特烈二世(神圣罗马帝国的皇帝)的坐上客。

欧洲数学在希腊文明衰落之后长期处于停滞状态,直到12世纪才有复苏的迹象。这种复苏开始是受了翻译、传播希腊、阿拉伯著作的刺激。对希腊与东方古典数学成就的发掘、探讨,最终导致了文艺复兴时期(15~16世纪)欧洲数学的高涨。

文艺复兴的前哨意大利,由于其特殊地理位置与贸易联系而成为东西方文化的熔炉。意大利学者早在12~13世纪就开始翻译、介绍希腊与阿拉伯的数学文献。欧洲,黑暗时代以后第一位有影响的数学家斐波那契(约1175~1240)。

其拉丁文代表著作《计算之书》(Liber Abaci)和《几何实践》(Practica Geometriae)也是根据阿拉伯文与希腊文材料编译而成的,斐波那契,即比萨的列昂纳多(Leonardo of Pisa),早年随父在北非从师阿拉伯人习算,后又游历地中海沿岸诸国,回意大利后即写成《计算之书》(Liber Abaci,1202,亦译作《算盘全书》、《算经》)。

《计算之书》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。现传《算经》是1228年的修订版,其中还引进了著名的“斐波那契数列”。《几何实践》(Practica Geometriae, 1220)则着重叙述希腊几何与三角术。

斐波那契其他数学著作还有《平方数书》(Liber Quadratorum, 1225)、《花朵》(Flos, 1225)等,前者专论二次丢番图方程,后者内容多为腓特烈二世(Frederick II)宫廷数学竞赛问题,其中包含一个三次方程/十2x2十10x~-20求解。

斐波那契论证其根不能用尺规作出(即不可能是欧几里得的无理量),他还未加说明地给出了该方程的近似解(J一1. 36880810785)。微积分的创立与解析几何的发明一起,标志着文艺复兴后欧洲近代数学的兴起。

微积分的思想根源部分(尤其是积分学)可以追溯到古代希腊、中国和印度人的著作。在牛顿和莱布尼茨最终制定微积分以前,又经过了近一个世纪的酝酿。在这个酝酿时期对微积分有直接贡献的先驱者包括开普勒、卡瓦列里、费马、笛卡)U、沃利斯和巴罗(1.Barrow,1630~1677)等一大批数学家。

分数是谁发明的

在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,所以人们引入并使用了分数。

外国

在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。

公元前1850年左右的埃及算学文献中,也开始使用分数,不过那时候古埃及的分数只是分数单位。

中国

我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。

人类历史上最早产生的数是自然数(非负整数),以后在度量和平均分时往往不能正好得到整数的结果,这样就产生了分数。

用一个作标准的量(度量单位)去度量另一个量,只有当量若干次正好量尽的时候,才可以用一个整数来表示度量的结果。如果量若干次不能正好量尽,有两种情况:

例如,用b作标准去量a:

一种情况是把b分成n等份,用其中的一份作为新的度量单位去度量a,量m次正好量尽,就表示a含有把b分成n等份以后的m个等份。例如,把b分成4等份,用其中的一份去量a,量9次正好量尽.在这种情况下,不能用一个整数表示用b去度量a的结果,就必须引进一种新的数--分数来表示度量的结果。

另一种情况是无论把b分成几等份,用其中的一份作为新的度量a,都不能恰好量尽(如用圆的直径去量同一圆的周长)。在这种情况下,就需要引进一种新的数-无理数。在整数除法中,两个数相除,有时不能得到整数商。为了使除法运算总可以施行,也需要引进新的一种数-分数。

综上所述,分数是在实际度量和均分中产生的。

由来

说分数的历史,得从3000多年前的埃及说起。

3000多年前,古埃及为了在不能分得整数的情况下表示数,用特殊符号表示分子为1的分数。2000多年前,中国有了分数,但是,秦汉时期的分数的表现形式不一样。印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,今天分数的表示法就由此而来。

200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是7/3米.像7/3就是一种新的数,我们把它叫做分数。

名称

分数

为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征。例如,一个西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身分数的产生

分数的产生经历了一个漫长的过程。开始人们只使用简单的分数,如一半,一半的一半等,后来才逐渐出现了三分之一,三分之二等简单的分数。

大约在2000年前,古希腊人已经开始用分子和分母表示分数。分数在我国很早就有了,它是在用算筹做除法运算的基础上产生的。当除不尽时,把余数作为分子,除数作为分母,就产生了一个分子在上,分母在下的分数筹算形式。

继中国的筹算分数之后,又过了五六百年的时间,印度才出现了有关分数理论的论述。印度人记录分数的形式与我国古代的筹算分数是一样的,只不过使用的是阿拉伯数字。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。简单的说就是,实际生活中,人们在进行测量和计算时往往不能得到整数的结果,为了适应这种实际的需要,于是人们就发明创造了分数。分数就是这样产生的。

最早使用分数的是我国,我国古代有许多关于分数的记载。如:在《左传》一书中记载,春秋时代,诸侯的城池,最大不超过周国的1/3,中等的不超过1/5,小的不得超过1/9;秦始皇时期,拟定了一年的天数为365又1/4天;《九章算术》是我国古代的一本专著,其中第一章《方田》里就讲了分数四则算法。古代分数用“1/111”表示1/3。

分数的起源和发展历史是怎么样的?

分数的由来:

分数的历史,得从三千多年前的埃及说起。

三千多年前,古埃及为了在不能分得整数的情况下表示数,用特殊符号表示分子为1的分数。两千多年前,中国有了分数,但是,秦汉时期的分数的表现形式不一样。印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,今天分数的表示法就由此而来。

分数计算方法:

分数乘整数的意义与整数乘法的意义相同,都是(求几个相同加数和的简便运算)。

分数乘整数的意义与整数乘法的意义相同,一个数与分数相乘,可以看作是求这个数的几分之几是多少。

分数乘法是一种数学运算方法,分数的分子与分子相乘,分母与分母相乘,能约分的要先约分,分子能不能和分母乘,做第一步时,就要想一个数的分子和另一个数的分母能不能约分(0除外)。

分数线是哪个国家发明的?

意大利。

比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),意大利数学家,西方第一个研究斐波那契数,并将现代书写数和乘数的位值表示法系统引入欧洲。也是分数线的创始人。

分数线上面的数叫做分子,分数线下面的数叫做分母。有时是一条斜杠“/”,斜杠左边是分子,右边是分母。在某种意义上说,分数线等于除号和比号。分子是被除数,分母是除数;分子在比号左边,分母在比号右边。

扩展资料:

分数的历史:

最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000bc。大约4000年前,埃及人用分数略有不同的方法分开。他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。

希腊人使用单位分数和(后)持续分数。现代的称为bhinnarasi的分数似乎起源于印度,他们的作品通过将分子(Sanskrit:amsa)放在分母(cheda)上,但没有它们之间的条纹,形成分数。

分数线是阿拉伯人发明的吗

分数线是阿拉伯人发明的。分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。有时是一条斜杠“/”,斜杠左边是分子,右边是分母。

分数分为假分数和真分数。假分数又分为带分数和整数。分子和分母互质,这个分数就称为最简分数。要把小数化分数,看看是几位小数,来确定分母,再看小数点后是几,就是分子,如有整数,就变成带分数。

通过上述对分数分数线是谁发明的和分数线是谁人发明的解读,相信您一定有了深入的理解,如果未能解决您的疑问,可在评论区留言哟。

版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文