数学倍角公式是谁发明的(倍角公式是初中学的吗)

百科问答网今天要给大家分享的是有关数学倍角公式是谁发明的的知识,希望对于各位朋友学习倍角公式是初中学的吗的过程中有帮助。

文章目录:

三角函数

三角函数 是 基本初等函数 之一 , 是以角度(数学上最常用弧度制,下同)为 自变量 ,角度对应 任意角 终边与 单位圆 交点坐标或其比值为 因变量 的函数。也可以等价地用与 单位圆 有关的各种线段的长度来定义。三角函数在研究三角形和 圆 等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在 数学分析 中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是 复数 值。

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、 半正矢函数 、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为 双曲正弦函数 、 双曲余弦函数 等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

中文名

三角函数

外文名

trigonometric

function

提出者

印度数学家

提出时间

公元五世纪

适用领域

函数及图像

应用学科

数学

目录

[if !supportLists].         [endif]1  发展历史

[if !supportLists].         [endif]▪ 起源

[if !supportLists].         [endif]▪ 古希腊历史

[if !supportLists].         [endif]▪ 阿拉伯历史

[if !supportLists].         [endif]▪ 弦表的发明

[if !supportLists].         [endif]▪ 传入中国

[if !supportLists].         [endif]2  定义

[if !supportLists].         [endif]▪ 直角三角形三角函数定义

[if !supportLists].         [endif]▪ 基本三角函数关系的速记方法

[if !supportLists].         [endif]▪ 变化规律

[if !supportLists].         [endif]▪ 任意角三角函数定义

[if !supportLists].         [endif]▪ 单位圆定义

[if !supportLists].         [endif]▪ 级数定义

[if !supportLists].         [endif]3  三角学

[if !supportLists].         [endif]4  特殊角

[if !supportLists].         [endif]5  几何性质

[if !supportLists].         [endif]▪ 函数图象

[if !supportLists].         [endif]▪ 最小正周期

[if !supportLists].         [endif]6  诱导公式

[if !supportLists].         [endif]▪ 公式内容

[if !supportLists].         [endif]▪ 推导方法

[if !supportLists].         [endif]7  关于三角恒等式

[if !supportLists].         [endif]▪ 两角和与差

[if !supportLists].         [endif]▪ 和差化积

[if !supportLists].         [endif]▪ 积化和差

[if !supportLists].         [endif]▪ 二倍角公式

[if !supportLists].         [endif]▪ 三倍角公式

[if !supportLists].         [endif]▪ n倍角公式

[if !supportLists].         [endif]▪ 半角公式

[if !supportLists].         [endif]▪ 辅助角公式

[if !supportLists].         [endif]▪ 万能公式

[if !supportLists].         [endif]▪ 降幂公式

[if !supportLists].         [endif]▪ 三角和

[if !supportLists].         [endif]▪ 幂级数

[if !supportLists].         [endif]▪ 泰勒展开式

[if !supportLists].         [endif]▪ 傅里叶级数

[if !supportLists].         [endif]8  概念

[if !supportLists].         [endif]9  推广

[if !supportLists].         [endif]10  复数性质

[if !supportLists].         [endif]11  相关定理

[if !supportLists].         [endif]▪ 解释

[if !supportLists].         [endif]▪ 正弦定理

[if !supportLists].         [endif]▪ 余弦定理

[if !supportLists].         [endif]▪ 正切定理

[if !supportLists].         [endif]▪ 广义射影定理

[if !supportLists].         [endif]▪ 三角恒等式

[if !supportLists].         [endif]12  函数介绍

[if !supportLists].         [endif]▪ 正弦函数

[if !supportLists].         [endif]▪ 余弦函数

[if !supportLists].         [endif]▪ 正切函数

[if !supportLists].         [endif]▪ 余切函数

[if !supportLists].         [endif]▪ 正割函数

[if !supportLists].         [endif]▪ 余割函数

[if !supportLists].         [endif]▪ 正矢函数

[if !supportLists].         [endif]▪ 余矢函数

[if !supportLists].         [endif]▪ 半正矢函数

[if !supportLists].         [endif]▪ 半余矢函数

[if !supportLists].         [endif]▪ 外正割函数

[if !supportLists].         [endif]▪ 外余割函数

[if !supportLists].         [endif]13  记忆口诀

发展历史

编辑

起源

公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个 计算工具 ,是一个附属品,但是 三角学 的内容却由于印度数学家的努力而大大的丰富了。

三角学中” 正弦 ”和” 余弦 ”的概念就是由印度数学家首先引进的,他们还造出了比 托勒密 更精确的正弦表。

我们已知道,托勒密和 希帕克 造出的弦表是 圆 的全 弦 表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦( AC )与全弦所对弧的一半( AD )相对应,即将 AC 与 ∠AOC 对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。

印度人 称连结 弧 ( AB )的两端的弦( AB )为”吉瓦(jiba)”,是弓弦的意思;称AB的一半( AC ) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪, 阿拉伯文 被转译成拉丁文,这个字被意译成了”sinus”。 [1]

古希腊历史

早期对于三角函数的研究可以追溯到古代。 古希腊 三角术的奠基人是公元前2世纪的 喜帕恰斯 。他按照 古巴比伦 人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的 弧度制 不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。 梅涅劳斯 在他的著作《球面学》中使用了正弦来描述球面的 梅涅劳斯定理 。古希腊三角学与其天文学的应用在埃及的 托勒密 时代达到了高峰,托勒密在《 数学汇编 》( Syntaxis Mathematica )中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。

古希腊文化传播到 古印度 后,古印度人对三角术进行了进一步的研究。公元5世纪末的数学家 阿耶波多 提出用弧对应的弦长的一半来对应半弧的正弦,这个做法被后来的古印度数学家使用,和现代的正弦定义一致了。阿耶波多的计算中也使用了余弦和正割。他在计算弦长时使用了不同的单位,重新计算了0到90度中间隔三又四分之三度(3.75°)的三角函数值表。然而古印度的数学与当时的中国一样,停留在计算方面,缺乏系统的定义和演绎的证明。阿拉伯人也采用了古印度人的正弦定义,但他们的三角学是直接继承于古希腊。阿拉伯天文学家引入了 正切 和 余切 、 正割 和 余割 的概念,并计算了间隔10分(10′ ) 的正弦和正切数值表。到了公元14世纪,阿拉伯人将三角计算重新以算术方式代数化(古希腊人采用的是建立在几何上的推导方式)的努力为后来三角学从天文学中独立出来,成为了有更广泛应用的学科奠定了基础。

阿拉伯历史

进入15世纪后, 阿拉伯数学 文化开始传入欧洲。随着欧洲商业的兴盛,航行、历法测定和地理测绘中出现了对三角学的需求。在翻译阿拉伯数学著作的同时,欧洲数学家开始制作更详细精确的 三角函数值 表。 哥白尼 的学生乔治·约阿希姆·瑞提克斯制作了间隔10秒(10″ ) 的正弦表,有9位精确值。瑞提克斯还改变了正弦的定义,原来称弧对应的弦长是正弦,瑞提克斯则将角度对应的弦长称为正弦。16世纪后,数学家开始将 古希腊 有关球面三角的结果和定理转化为平面三角定理。 弗朗索瓦·韦达 给出了托勒密的不少结果对应的平面三角形式。他还尝试计算了多倍角正弦的表达方式。

18世纪开始,随着解析几何等分析学工具的引进,数学家们开始对三角函数进行分析学上的研究。牛顿在1669年的《分析学》一书中给出了正弦和余弦函数的 无穷级数 表示。Collins将牛顿的结果告诉了詹姆斯·格列高里,后者进一步给出了正切等三角函数的无穷级数。 莱布尼兹 在1673年左右也独立得到了这一结果。 欧拉 的《无穷小量分析引论》( Introductio in Analysin Infinitorum ,1748年)对建立三角函数的分析处理做了最主要的贡献,他定义三角函数为无穷级数,并表述了 欧拉公式 ,还有使用接近现代的简写 sin. 、 cos. 、 tang. 、 cot. 、 sec. 和 cosec. 。

弦表的发明

根据认识,弦表的制作似应该是由一系列不同的角出发,去作一系列 直角三角形 ,然后一一量出AC,A’C’,A’’C’’…之间的距离。然而,第一张弦表制作者希腊文学家希帕克 (Hipparchus,约前180~前125)不是这样作,他采用的是在同一个固定的 圆 内,去计算给定度数的圆弧AB所对应的弦AB的长。这就是说,希帕克是靠计算,而不是靠工具量出弦长来制表的,这正是他的卓越之处。希帕克的原著早已失传,我们所知关于希帕克在三角学上的成就,是从公元二世纪希腊著名天文学家托勒密的遗著《天文集》中得到的。虽然托勒密说他的这些成就出自希帕克,但事实上不少是他自己的创造。

据托勒密书中记载,为了度量圆弧与弦长,他们采用了巴比伦人的60进位法。把 圆周 360等分,把它的半径60等分,在圆周和半径的每一等分中再等分60份,每一小份又等分为60份,这样就得出了托勒密所谓的第一小份和第二小份。很久以后,罗马人把它们分别取名为”partes minutae primae”和”partes minutae

secundae”;后来,这两个名字演变为”minute”和”second”,成为角和时间的度量上” 分 ”和” 秒 ”这两个单位得起源。

建立了半径与圆周的度量单位以后, 希帕克 和 托勒密 先着手计算一些特殊 圆弧 所对应的弦长。比如 60°弧(1/6圆 周长 )所对的弦长,正好是内接 正六边形 的边长,它与半径相等,因此得出60°弧对应的弦值是60个半径单位(半径长的1/60为一个单位);用同样的方法,可以算出120°弧、90°弧以及72°弧所对应的弦值。有了这些弧所对应的弦值,接着就利用所称的” 托勒密定理 ”,来推算两条已知所对弦长的弧的”和”与”差”所对的弦长,以及由一条弧所对的弦长来计算这条弧的一半所对的弦长。正是基于这样一种几何上的推算。他们终于造出了世界上第一张弦表。

传入中国

三角学 输入中国,开始于明 崇祯 4年(1631年),这一年, 邓玉函 、 汤若望 和 徐光启 合编《 大测 》,作为 历书 的一部份呈献给朝廷,这是我国第一部编译的三角学。在《大 测 》中,首先将sine译为”正半弦”,简称” 正弦 ”,这就成了“正弦” 一词 的由来。 [2]

定义

编辑

直角三角形三角函数定义

在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个 直角三角形 ,其中∠ACB为 直角 。对∠BAC而言, 对边 (opposite)a=BC、 斜边 (hypotenuse)c=AB、 邻边 (adjacent)b=AC,则存在以下关系:

基本函数 英文 缩写 表达式 语言描述 [if !vml][endif] 三角形

正弦函数 sine sin a/c ∠A 的对边比斜边

余弦函数 cosine cos b/c ∠A 的邻边比斜边

正切函数 tangent tan a/b ∠A 的对边比邻边

余切函数 cotangent cot b/a ∠A 的邻边比对边

正割函数 secant sec c/b ∠A 的斜边比邻边

余割函数 cosecant csc c/a ∠A 的斜边比对边

注:正切函数、余切函数曾被写作 tg 、 ctg , 现已不用这种写法 。

基本三角函数关系的速记方法

[if !vml][endif] 六边形

如右图,六边形的六个角分别代表六种三角函数,存在如下关系:

1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。

2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...

3)阴影部分的三角形,处于上方两个顶点的平方之和等于下顶点的平方值,如:

[if !vml]

[endif]

 ;

[if !vml]

[endif]

 ;

[if !vml]

[endif]

 。

变化规律

正弦 值在

[if !vml]

[endif]

 随角度增大(减小)而增大(减小),在

[if !vml]

[endif]

 随角度增大(减小)而减小(增大);

余弦值在

[if !vml]

[endif]

 随角度增大(减小)而增大(减小),在

[if !vml]

[endif]

 随角度增大(减小)而减小(增大);

正切 值在

[if !vml]

[endif]

 随角度增大(减小)而增大(减小);

余切值在

[if !vml]

[endif]

 随角度增大(减小)而减小(增大)。

注:以上其他情况可类推,参考第五项:几何性质。

除了上述六个常见的函数,还有一些不常见的三角函数:

函数名 与常见函数转化关系  

正矢函数 [if !vml]

[endif]

[if !vml][endif] versin

[if !vml]

[endif]

余矢函数 [if !vml]

[endif]

[if !vml]

[endif]

半正矢函数 [if !vml]

[endif]

[if !vml]

[endif]

半余矢函数 [if !vml]

[endif]

[if !vml]

[endif]

外正割函数 [if !vml]

[endif]

外余割函数 [if !vml]

[endif]

任意角三角函数定义

在 平面直角坐标系 xOy中设∠β的始边为x轴的正半轴,设点P(x,y)为∠β的终边上不与原点O重合的任意一点,设r=OP,令∠β=∠α,则:

[if !vml]

[endif]

 ,

[if !vml]

[endif]

 ,

[if !vml]

[endif]

 ,

[if !vml]

[endif]

 ,

[if !vml]

[endif]

 ,

[if !vml]

[endif]

 。

单位圆定义

[if !vml][endif] 三角函数

六个三角函数也可以依据 半径 为1中心为原点的 单位圆 来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于 直角三角形 。但是 单位圆 定义的确允许三角函数对所有 正数 和 负数 辐角都有定义,而不只是对于在 0  和 π/2 弧度 之间的角。它也提供了一个图像,把所有重要的三角函数都 包含 了。根据 勾股定理 ,单位圆的 方程 是:对于圆上的任意点( x,y ), x²+y²=1 。

图像中给出了用 弧度 度量的一些常见的角:逆时针方向的度量是 正角 ,而顺时针的度量是 负角 。设一个过 原点 的线,同 x 轴正半部分得到一个角 θ ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cosθ 和 sinθ 。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sinθ = y /1和 cosθ = x /1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。

对于大于 2π 或小于等于 2π  的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为 2π 的 周期函数 :对于任何角度 θ 和任何 整数 k 。

周期函数的 最小正周期 叫做这个函数的“ 基本周期 ”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π弧度或 360°;正切或余切的基本周期是半圆,也就是 π 弧度或 180°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。

在 正切函数 的图像中,在角 k π 附近变化缓慢,而在接近角 ( k + 1/2)π 的时候变化迅速。正切函数的图像在 θ = ( k + 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 ( k + 1/2)π 的时候函数接近 正无穷 ,而从右侧接近 ( k + 1/2)π 的时候函数接近负无穷。

[if !vml][endif] 三角函数

另一方面,所有基本三角函数都可依据中心为 O 的单位圆来定义,类似于历史上使用的几何定义。特别 是,对于这个圆的 弦 AB ,这里的 θ 是对向角的一半,sin θ 是 AC (半弦),这是印度的 阿耶波多 介入的定义。cos θ 是水平距离 OC ,versin θ =1-cos θ 是 CD 。tan θ 是通过 A 的 切线 的 线段 AE 的长度,所以这个函数才叫 正切 。cot θ 是另一个切线段 AF 。sec θ = OE 和csc θ = OF 是割线(与圆相交于两点)的线段,所以可以看作 OA 沿着 A 的切线分别向水平和垂直轴的投影。 DE 是exsec θ =sec θ -1(正割在圆外的部分)。通过这些构造,容易看出 正割 和正切函数在 θ 接近 π/2的时候发散,而余割和余切在 θ接近零的时候发散。

依据单位圆定义,可以做三个 有向线段 ( 向量 )来表示正弦、余弦、正切的值。如图所示,圆O是一个单位圆,P是 α 的 终边 与单位圆上的交点,M点是 P 在 x 轴的投影, A (1,0)是圆O与x轴 正半轴 的交点,过A点做过圆O的 切线 。

那么向量 MP 对应的就是 α 的 正

三角函数在各领域的应用。

一、实际。

某天小明和小刚在山上玩,有棵树吸引了他们,于是小明和小刚二人打算测量出这棵树的高度,于是他们拿来了一系列的测量工具。

小明说:“以树的底部为A,底部为B,在平地上选取一点O,亮出AO与BO的距离,测量AO与地面形成的角α,BO与地面形成的角β。则得出树高为:sinβ×BO—sinα×AO。”

我说:“你的方法麻烦了,而且这颗树离地面好远。我打算把树的周围弄成平地,选取一点O,以树的底部为A,底部为B,测量出∠AOB和BO的距离,则树高为sin∠AOB×BO”

二、理论。

【例题】如图,已知某小区的两幢10层住宅楼间的距离为AC=30 m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α。

(1) 用含α的式子表示h(不必指出α的取值范围);

(2) 当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?

解:(1)过点E作EF⊥AB于F,由题意,四边形ACEF为矩形。

∴EF=AC=30,AF=CE=h, ∠BEF=α,∴BF=3×10-h=30-h。

又 在Rt△BEF中,tan∠BEF=BFEF ,

∴tanα= ,即30 - h=30tanα. ∴h=30-30tanα。

(2)当α=30°时,h=30-30tan30°=30-30× ≈12.7,

∵ 12.7÷3≈4.2, ∴ B点的影子落在乙楼的第五层。

当B点的影子落在C处时,甲楼的影子刚好不影响乙楼采光.

此时,由AB=AC=30,知△ABC是等腰直角三角形。

∴∠ACB=45°, 7分

∴ 45-30/15 = 1(小时).

故经过1小时后,甲楼的影子刚好不影响乙楼采光。

分享给你的朋友吧:

i贴吧

新浪微博

腾讯微博

QQ空间

人人网

豆瓣

MSN

对我有帮助

26回答时间:2010-2-25 15:43 | 我来评论

向TA求助 回答者: Q_time | 二级采纳率:10%

擅长领域: 暂未定制

参加的活动: 暂时没有参加的活动

提问者对于答案的评价:

测旗杆的高度,根据影子测

测一栋大楼的高度, 原理都一样 测量山高

测量树高,确定航海行程问题,确定光照及房屋建造合理性

调整电网,比如两个电网并接的时候

用于山的坡度 TAN 平面所走的距离 比上 上升的高度 ,同理还可以测量楼的高啊 塔的高

测量树高,确定航海行程问题,确定光照及房屋建造合理性

______________________________________________________________________________

名称定义

研究平面三角形和球面三角形边角关系的数学学科。三角学是以研究三角形的边和角的关系为基础,应用于测量为目的,同时也研究三角函数的性质及其应用的一门学科。

[编辑本段]三角学的起源

三角学起源于古希腊。为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理。印度人和阿拉伯人对三角学也有研究和推进,但主要是应用在天文学方面。15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的。16世纪法国数学家韦达系统地研究了平面三角。他出版了应用于三角形的数学定律的书。此后,平面三角从天文学中分离出来,成了一个独立的分支。平面三角学的内容主要有三角函数、解三角形和三角方程。

三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道。商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远。”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章.

三角学的历史

早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.例如,古希腊门纳劳斯(Menelaus of Alexandria,公元100年左右)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira,约505~587年)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274年)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J Regiomontanus,1436~1476年)。

雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》。这是欧洲第一部独立于天文学的三角学著作。全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉。雷格蒙塔努斯还较早地制成了一些三角函数表。

雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对 16 世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响.

三角学一词的英文是trigonometry,来自拉丁文tuigonometuia.最先使用该词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613年),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.

16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucu s,1514~1574年)。他1536年毕业于滕贝格大学,留校讲授算术和几何。1539 年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表。

17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用.

三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的阿拉伯人中已有研究.

文艺复兴后期,法国数学家韦达(F Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579年)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔。给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等。第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础。对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593 年又用三角方法推导出余弦定理。

1722年英国数学家棣莫弗(A De Meiver)得到以他的名字命名的三角学定理

(cosθ±isinθ)n=cosnθ+isinnθ,

并证明了n是正有理数时公式成立;1748年欧拉(L Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式

eiθ=cosθ+isinθ,

对三角学的发展起到了重要的推动作用.

近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形 解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及 19 世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论.

[编辑本段]三角学的特点与运用

早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.直到13世纪中亚数学家纳速拉丁在总结前人成就的基础上,著成《完全四边形》一书,才把三角学从天文学中分离出来.15世纪,德国的雷格蒙塔努斯(J·Regiomontanus,1436—1476)的《论三角》一书的出版,才标志古代三角学正式成为独立的学科.这本书中不仅有很精密的正弦表、余弦表等,而且给出了现代三角学的雏形.

16世纪法国数学家韦达(F·Viete,1540—1603)则更进一步将三角学系统化,在他对三角研究的第一本著作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述.18世纪瑞士数学家欧拉(L·Euler,1707—1783),他首先研究了三角函数.这使三角学从原先静态研究三角形的解法中解脱出来,成为反映现实世界中某些运动和变化的一门具有现代数学特征的学科.欧拉不仅用直角坐标来定义三角函数,彻底解决了三角函数在四个象限中的符号问题,同时引进直角坐标系,在代数与几何之间架起了一座桥梁,通过数形结合,为数学的学习与研究提供了重要的思想方法.著名的欧拉公式,把原来人们认为互不相关的三角函数和指数函数联系起来了,为三角学增添了新的活力.

因此三角学是源于测量实践,其后经过了漫长时间的孕育,众多中外数学家的不断努力,才逐渐丰富,演变发展成为现在的三角学。

三角函数的计算方法

三角学中的三角函数有6个,是用几何方法定义的。在直角坐标系中,设以射线Ox为始边,OP为终边的角为θ,P点的坐标为(x,y),|OP|=r,这时6个比由θ的大小确定,都是θ的函数,称它们为角θ的三角函数,分别记作并分别称为角θ的正弦、余弦、正切、余切、正割、余割。

同角三角函数间有3组运算关系,即

三角函数都是周期函数,以2π为周期。

三角函数的基本恒等式有和角公式:

sin(!+@)=sin!cos@+cos!sin@

cos(!+@)=cos!cos@-sin!sin@

由这两个公式可以导出差角公式、倍角公式、半角公式、和差化积与积化和差等公式。

解三角形是已知三角形的某些元素(边和角)时求其余未知元素。设三角形的三个角为A,B,C,它们所对的边分别为a,b,c,则有

正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)

余弦定理:a2=b2+c2-2bccosA这两个定理是解三角形的主要依据。

三角方程一般指含有某些三角函数的方程,并且三角函数的自变量中含有未知数。由于每个三角函数都是周期函数,所以任何一个三角方程只要有解,就有无穷多个解。

三角测量

三角测量是指在导航,测量及土木工程中精确测量距离和角度的技术,主要用于为船只或飞机定位。它的原理是:如果已知三角形的一边及两角,则其余的两边一角可用平面三角学的方法计算出来。在西方,古希腊著名的数学家毕达哥拉斯首次证明了有关直角三角形的“毕达哥拉斯定理”,即中国的“勾股定理”,对几何学研究及其应用做出了巨大贡献.

倍角公式 是什么

倍角公式,是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

倍角公式有哪些

倍角公式:

Sin2A=2SinA.CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2是sinA的平方sin2(A))

二倍角公式:

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

三倍角公式:

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3α=tana·tan(π/3+a)·tan(π/3-a)

半角公式是什么

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

其余三角函数公式有哪些

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

数学倍角公式是哪些?

高中常用的是二倍角公式:

sin2α=2sinαcosα

cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2=2(cosα)^2-1.

tan2α=2tanα/[1-(tanα)^2]

其他倍角公式:

三倍角公式:

sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)

tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-α)

三角函数的概念:

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义城为整个实数域。

三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

问些关于三角函数的问题~~~~

1、三角函数用处大了去了,最广泛的应用,如求面积,力学分析。

2、3、三角函数就是直角三角形各边关系。再加勾股定理(直角三角形斜边长的平方等于两条直角边边长的平方和),推出各种各样的三角公式。

下面的粘贴建议你认真看一下。基本就差不多 了

历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.

(一)

��马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.

��自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.

(二)

��早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.

��1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx.

��当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.

��18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延.

(三)

��函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究.

��后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.”

��在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由

�表示出,其中

��富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍.

��通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义.

��1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分.

��1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.”

��根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数):

f(x)= 1���(x为有理数),

0���(x为无理数).

��在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数.

��狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.

(四)

��生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数,

即�ρ(x)= 0,x≠0,

∞,x=0.

��δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是

��P(0)=压力/接触面=1/0=∞.

��其余点x≠0处,因无压力,故无压强,即�P(x)=0.另外,我们知道压强函数的积分等于压力,即

�函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.

��函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系.

��函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.

��设集合X、Y,我们定义X与Y的积集X×Y为

��X×Y={(x,y)|x∈X,y∈Y}.

��积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系.

��现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了.

��从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

基本初等内容

它有六种基本函数(初等基本表示):

函数名 正弦 余弦 正切 余切 正割 余割

(见:函数图形曲线)

三角函数图形曲线在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

(斜边为r,对边为y,邻边为x。)

以及两个不常用,已趋于被淘汰的函数:

正矢函数 versinθ =1-cosθ

余矢函数 coversθ =1-sinθ

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

[编辑本段]同角三角函数间的基本关系式:

·平方关系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

·积的关系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·[1]三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中

sint=B/(A²+B²)^(1/2)

cost=A/(A²+B²)^(1/2)

tant=B/A

Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

tan(2α)=2tanα/[1-tan²(α)]

·三倍角公式:

sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin²(α)=(1-cos(2α))/2=versin(2α)/2

cos²(α)=(1+cos(2α))/2=covers(2α)/2

tan²(α)=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan²(α/2)]

cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

tanα=2tan(α/2)/[1-tan²(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos²α

1-cos2α=2sin²α

1+sinα=(sinα/2+cosα/2)²

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

[编辑本段]三角函数的诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

[编辑本段]正余弦定理

正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边

斜边与邻边夹角a

sin=y/r

无论yx或y≤x

无论a多大多小可以任意大小

正弦的最大值为1 最小值为-1

[编辑本段]部分高等内容

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

特殊角的三角函数:

角度a 0° 30° 45° 60° 90° 120° 180°

1.sina 0 1/2 1 3/2 1 3/2 0

2.cosa 1 3/2 2/2 1/2 0 -1/2 -1

3.tana 0 1/3 1 3 / -3 0

4.cota / 3 1 1/3 0 -1/3 /

[编辑本段]三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.

泰勒展开式(幂级数展开法):

f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

实用幂级数:

ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|1)

sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞x∞)

cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞x∞)

arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|1)

arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|1)

arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞x∞)

cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞x∞)

arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|1)

arctanh x = x + x^3/3 + x^5/5 + ... (|x|1)

在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

--------------------------------------------------------------------------------

傅立叶级数(三角级数)

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

三角函数的数值符号

正弦 第一,二象限为正, 第三,四象限为负

余弦 第一,四象限为正 第二,三象限为负

正切 第一,三象限为正 第二,四象限为负

[编辑本段]三角函数定义域和值域

sin(x),cos(x)的定义域为R,值域为〔-1,1〕

tan(x)的定义域为x不等于π/2+kπ,值域为R

cot(x)的定义域为x不等于kπ,值域为R

[编辑本段]初等三角函数导数

y=sinx---y'=cosx

y=cosx---y'=-sinx

y=tanx---y'=1/(cosx)² =(secx)²

y=cotx---y'=-1/(sinx)² =-(cscx)²

y=secx---y'=secxtanx

y=cscx---y'=-cscxcotx

y=arcsinx---y'=1/√1-x²

y=arccosx---y'=-1/√1-x²

y=arctanx---y'=1/(1+x²)

y=arccotx---y'=-1/(1+x²)

[编辑本段]反三角函数

三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2yπ/2;反余切函数y=arccot x的主值限在0yπ。

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).

反三角函数主要是三个:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;

y=arccos(x),定义域[-1,1],值域[0,π],图象用兰色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sinarcsin(x)=x,定义域[-1,1],值域 【-π/2,π/2】

证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代如上式即可得

其他几个用类似方法可得。

数学倍角公式是谁发明的的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于倍角公式是初中学的吗、数学倍角公式是谁发明的的信息别忘了在本站进行查找喔。

版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文