模仿日食发明仪器的是谁(我设计的关于日食的模拟实验)
本篇文章给大家谈谈模仿日食发明仪器的是谁,以及我设计的关于日食的模拟实验对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
文章目录:
本杰明·富兰克林如何传播关于“超自然”日食的科学
富兰克林毕生的追求是向普通人传播科学知识。国会图书馆印刷与照片部) 这篇文章最初是在对话会上发表的。该出版物将这篇文章贡献给了《生命科学》的专家之声:Op EdInsights。
在他20岁的时候,殖民地美国人本杰明富兰克林已经在伦敦做了两年的印刷工。1726年他回到费城。在回家的海上航行中,他保存了一本日记,其中包括他对自然世界的许多观察。富兰克林好奇,口齿伶俐,对掌握宇宙很感兴趣。9月14日,在一个午后的平静中,富兰克林写道:
,当我们坐在甲板上吹风时,我们惊讶地发现太阳突然变得异常黑暗,我们所能察觉到的只有一小片薄薄的云层:当那时候经过时,我们发现那个光荣的名人在一次巨大的日蚀下工作。他十二个中至少有十个躲开了我们的眼睛,我们担心他会完全变黑。
日全食并不罕见,平均每18个月地球上就有一次。富兰克林和他的同伴们可能以前见过日食。对富兰克林和他的这一代人来说,不同的是,他们对日食的成因和准确预测日食的可能性有了新的认识。
欧洲的前几代人依靠神奇的思维,通过神秘的镜头解读这类天象事件,仿佛宇宙在从天堂发出信息。相比之下,富兰克林的年龄是在超自然阅读受到怀疑的时候。他将继续通过他广受欢迎的历书传播关于天文事件的现代科学观点,并试图将人们从神秘和占星术预言的领域中解放出来,用现代天文学
将天视为围绕人类建造的。几个世纪以来,人们都信奉托勒密关于太阳系的信仰:行星和太阳围绕着静止的地球旋转。
认为是上帝驱动了天空的想法非常古老。因为人们认为他们的上帝(或诸神)引导了所有的天堂事件,所以许多人——例如古代中国人、埃及人和欧洲人——相信他们在天空中看到的东西提供了未来事件的迹象并不奇怪,许多世纪以来,日食被认为是人类善恶的预兆。它们被认为具有神奇或神秘的预测能力,可以影响人类的生活。公元一世纪,自称精通超自然现象的人,包括占星家、魔术师、炼金术士和神秘主义者,统治着国王、宗教领袖和全体人民。
尼古拉斯·哥白尼,他的一生横跨15和16世纪,用科学方法设计出对太阳系更精确的认识。哥白尼在其著名的著作《论天体的旋转》(1543年出版)中指出,行星是围绕太阳旋转的。不过,他并没有完全明白:他认为行星体有圆形轨道,因为基督教的上帝会在宇宙中设计出完美的圆形。行星的运动是椭圆的,这是后来的发现。
到本杰明·富兰克林在新英格兰长大时(大约150年后),很少有人还相信托勒密体系。大多数人从生活在日益开明的文化中了解到,哥白尼体系更加可靠。富兰克林和他这一代的许多人一样,相信有关环境变化的科学原因的知识可以减少人类对天空可能预示着什么的恐惧他们生活的世界。精确的仪器,如星盘,使人们能够测量行星的运动,从而预测天体的运动,特别是日食、月食和金星等行星的运动,富兰克林批评了教育只属于精英阶层的观点。他希望把知识带给普通人,这样他们就可以依靠在教堂里听到的以外的专业知识。富兰克林选择用他自己的年历和他的讽刺笔来帮助读者区分天文事件和占星学预测。
老式年历
印刷是16、17和18世纪的一项重大技术创新,有助于促进信息共享,尤其是通过历书。
郭守敬发明了什么
郭守敬发明了简仪、赤道经纬和日晷、高表与景符等仪器。
元初的天文仪器,大部分都是宋、金时期遗留下来的,仪器破旧已经影响到了精确度。因此郭守敬在原仪器的基础上进行改制,并在实践中重新设计。在三年的时间里,郭守敬改制和重新创造了十多种天文仪器。其中主要的是简仪、赤道经纬和日晷三种仪器结合利用,用来观察天空中的日、月、星宿的运动,改进后的仪器不受仪器上圆环阴影的影响。高表与景符是一组测量日影的仪器,是郭守敬的创新,把过去的八尺改为四丈高表,表上架设横梁,石圭上放置景符透影和景符上的日影重合时,即当地日中时刻,用这种仪器测得的是日心之影,较前测得的日边之影更加精密,这是时刻仪器上一个很大的改进。
简仪,是元代汉族天文学家郭守敬于公元1276年创制的一种测量天体位置的仪器。因将结构繁复的唐宋浑仪加以革新简化而成,故称简仪。简仪的创制,是中国天文仪器制造史上的一大飞跃,是当时世界上的一项先进技术。欧洲直到三百多年之后的1598年才由丹麦天文学家第谷发明与之类似的装置。
简介郭守敬
郭守敬(1231-1316),字若思,元朝著名的天文学家、数学家、水利专家。汉族,顺德邢台(邢台市邢台县)人。生于元太宗三年,卒于元仁宗延佑三年。郭守敬曾担任都水监,负责修治元大都至通州的运河。1276年郭守敬修订新历法,经4年时间制订出《授时历》,通行360多年。是当时世界上最先进的一种历法。1291年1月26日,元世祖根据郭守敬的建议,引大都西北的诸泉水,在金国原来运粮河的基础上重加修凿,东至通州入白河,全长164里,建坝湖11处,计20座。取名“通惠河”。1981年,为纪念郭守敬诞辰750周年,国际天文学会以他的名字为月球上的一座环形山命名。
他的一生主要是从事科学研究工作,在科学活动中,他精心观察客观事物的特点,从中掌据它们的发展规律;他能很好地发现和总结劳动人民的发明创造,从具体实践中得到运用和提高;他善于从别人的经验教训中吸取有用的东西,取长补短,使自已的科学研究事业逐渐趋于完善。但是,他从不满足前人的现成经验,敢于大胆探索,富有创新精神。由于他孜孜不倦、刻苦钻研、勤奋实干,所以在天文、历法、水利和数学等方面都取得了卓越的成就。
人造日食是怎样做的
人造日全食——日冕仪的发明与应用
日全食的观测还使人们认识到,极稀薄的日冕气体导致了日冕的极弱的辐射。即使在日冕下部亮度较大的部分,其亮度也只有太阳光球表面中部区域平均亮度的百万分之一。非日全食期间地球大气的散射光,再加上望远镜镜筒内的散射光,必然使亮度很低的日冕辐射被完全淹没而无法看到。
这样,不管是由于好奇心和求知欲驱使,或者实用所需,要想知道日冕的奥秘,除了充分利用日全食提供的机会之外,还必须设法解决在非日全食期间对日冕进行观测的问题。开发和利用日冕这个知识源的思路之一,是使太阳望远镜长时间的飞行在阳光照射月球形成的月影里,如同总是在地面日食带一样。上世纪60年代,美国曾使用飞机作追随月影的飞行,以便加长日全食的观测时间,不过从投资、技术设备等方面考虑非永久之计。另一种设想,就是人工造成日食状态,让望远镜的接收系统能够感到和记录日冕的辐射。因此,首先必须设法模仿日食过程,遮挡住太阳光球的强光,还需大量减少地球大气的散射光,从而使日冕辐射由被淹没状态突显出来。法国天文学家里奥成功地实现了这种设想。
1931年里奥发明了日冕仪,开启了人造日食观测与日全食观测并行的时代。这种日冕仪的原理是:(1)在望远镜镜筒里的物镜焦点处放置一块圆版,只把太阳光球射来的光遮挡住,并且把挡住的光从镜筒上的开口反射出去;(2)用光栏和遮板等将望远镜镜片和光栏等产生的衍射光与杂散光截挡住。为了减少地球大气的散射光,这种日冕仪需要安装在海拔2千米以上的高山上。因其遮挡光的遮板是置于望远镜的筒内,故称内遮挡式日冕仪。20世纪,里奥式日冕仪在法国、日本、前苏联及美国夏威夷和新墨西哥州等地的高山上纷纷投入观测。每个晴天,使用这种仪器可以长时间的观测日冕。为了不同的研究目的,在望远镜的终端或光路中可装上不同的附加设备。实际应用表明,里奥日冕仪还不能完全避免散射光的影响,应用这种日冕仪最多只能观测到距日心1.3倍太阳半径处的日冕。各国的高山日冕仪已投入使用多年,做科学研究性和常规数据性工作。观测的设备和数据资料向世界开放。
再辟新径相辅而行
诚然,用日冕仪可以长时间的监测日冕。然后,正如前面提及的,这种观测与日全食观测类似,只限于观测日面边缘以外的日冕,观测到的是日冕边缘外的日冕在天空背景上的投影。除此之外,如果能够观测太阳圆面上的日冕必会大大提高我们认识日冕的能力。例如,可以把日面上与日面边缘外的日冕观测结果综合起来,构造出日冕结构的三维形态,甚至为研究日冕中的物理机制创造条件。这肯定是日冕观测多年的期盼。
以光球为背景观测日冕,正如在背景强度是信号强度的百万倍的情况下,来探测日冕信号,如果不改变思路,将会面临很难克服的困难。这就迫使新的日冕观测仪器的设计必须另辟新路,单靠散射光强度的减小是无济于事的。这个新的思路就是拍摄太阳的单色像。这条路不属于人造日食的主题,但它与日全食观测、人造日食观测(高山日冕仪观测)是相互补充的三个重要手段,值得一提。
日冕具有百万度的高温,光球的温度只有6000度。这种差距为日面上的日冕观测提供了物理依据,那就是在X射线波段、远紫外波段和射电波段(即无线电波段)日冕的辐射强度大大高于太阳光球的辐射强度。如果在这几个波段对太阳拍摄单色像,应该可以清楚地显示出日面上日冕的结构、形态,而无光球的干扰。考虑到地球大气对紫外和X射线的吸收,这两个波段的太阳单色像需要在空间借助火箭或人造卫星来获取。
射电波段的太阳单色像可以在地面上取得,所用的设备最典型的是,20世纪60年代到80年代在米波单色像观测方面成果最多的澳大利亚米波日像仪。上个世纪40年代,美国用火箭探测太阳的X射线辐射。1964年用火箭拍到了日冕中低密度的区域(称为冕洞)。1967年,美国轨道太阳天文台系列探测卫星之一的OSO-4号首次成功拍到太阳的极紫外单色像。
在天上作人造日食观测
在太空作人造日食观测,简言之就是把高山日冕仪送上天,观测日冕。
科学技术不断发展,每前进一步就会有新的问题或新的知识点出现,成为下一项研究工作的动力。这一次轮到的是日冕物质抛射的发现及其推动的相关研究,其中主项之一是用高灵敏大视场的日冕仪作白光观测。
日全食、日冕仪和单色光仪三条路的相辅而行的结果,使得上世纪60年代起又逐渐形成了一个热点,就是日冕中的瞬变现象,特别是大尺度的快速变化及物质抛射现象和过程。
1971年9月OSO-7卫星升空,一架白光日冕仪首次成功观测到了几个日冕瞬变或者说日冕物质抛射事件。接着“天空实验室”在日面边缘之外的0.5~0.8太阳半径范围内,在1973年~1974年的225个观测日中观测到了70次白光日冕物质抛射事件(简称CME)。
日冕观测进化史:日食太少,我们就造一个出来
出品:科普中国
作者:张雪飞 刘煜 赵明宇(中国科学院云南天文台)
监制:中国科学院计算机网络信息中心
“夕日缺亏弯似月,百年不遇现皇都”。
日食是一种比较稀有的天文现象,日全食就更为罕见。作为日食中最完美的现象,每一次日全食都是一场“天文盛宴”,被世界各地的天文工作者视为解开太阳物理领域诸多谜题的良好时机。
现在,随着科学技术的迅速发展,罕见的日全食观测,或许将不再“罕见”。
日全食,就是在地球上某一位置的太阳光被月亮完全遮住的天文现象。
当日全食发生时,最光辉灿烂耀入眼睛的是“贝利珠”。其实,这是从月亮边缘起伏的山谷中穿过来的日光。
但日全食最主要观测的是日冕, 因为日冕的活动对地球有重要影响,而且研究日冕是解决太阳物理领域重大未解之谜的必经之路。
那么,什么是日冕呢?
我们肉眼可见的是光球层,而 日冕是太阳大气的最外层, 起始于色球层之上,向外一直延伸到行星际空间,形成连续向外流动的太阳风。
俗话说得好,“外行看热闹,行家看门道”。当日全食发生时,对天文学家而言,真是观测的好机会,可以做太多太多研究了!
比如:测算太阳辐射对地球电离层的影响;研究日冕复杂的形态学和活动现象;开展日冕区域的电子密度和温度研究;寻求太阳耀斑和日冕物质抛射触发机制的观测证据;寻找太阳黑子变化的成因;查证太阳磁场与日冕结构和活动的相互作用;深入 探索 影响近地空间环境和驱动日地空间灾害性天气 的源动力,为灾害性空间天气预报提供基础数据。
可惜的是,这种“良机”不是天天有。而且,真正全食的持续时间其实很短,对于天文研究人员来讲,能获取的数据量远远不够。
怎么办呢?
机会少,那我们就创造机会!一种“人造日全食”的方案,被提了出来。
天文学家通过“人造月亮”,研制了一种特殊的天文望远镜——日冕仪,开启了非日全食时的日冕观测时代。
对于解决日冕物质抛射的产生问题,以及为日冕加热等科学问题寻找答案来说,日冕仪的出现都意义非凡。
简单说,可以把它理解成一种安装了遮挡盘的望远镜,功能就是在没有日全食时,通过仪器的特殊结构模拟太阳在日全食时的影像,进行日冕观测。
传统的日冕仪按组成结构可分为:内掩式、外掩式。
内掩式日冕仪是将物镜放置在望远镜前端,在物镜成像的一次像面处设置一遮挡板(内掩体),该遮挡板就相当于日全食时的月亮。壮观绚丽的日冕光通过二次成像系统,就能进入我们的视线。
它长下面这样:
外掩式日冕仪是在物镜前端安置遮挡板(外掩体),遮挡太阳直射光,日冕光经物镜一次成像后,进入准直系统,并经二次成像系统,尽收眼底。
用日冕仪观测到的日冕是这样的:
和朋友聊天的时候,经常会听到大家对日冕仪的一些误解。
比如,不少人会说,这日冕仪可太好了,有了它,岂不是每天都可以看日全食,Paper发不停?
当然不是!
首先,“人造日全食”并不容易。 它需要攻克两项关键技术:一是日冕仪杂散光的抑制能力,二是为日冕仪的地面观测选择台址。
在观测中,除了我们想要观测的日冕的光,其他光都是杂散光,包括太阳直射光,玻璃材料不够纯净、有杂质引起的散射光,甚至光学组件边缘的衍射光,等等。在设计日冕仪的时候,需要进行建模分析,通过设置掩体、运用高精尖抛光技术、选用优质玻璃等种种操作,把杂散光尽量消除。
但是,因为日冕的亮 度比太阳光球层要暗很多(我们一般用B 表 示日面中心亮度,日冕能暗到10-5 10-13B ),所以难度非常大。
日冕仪组装完成后,距离“人造日全食”就更近一步了。
不过,要想成功获得“人造日全食”,还有关键一步,就是需要优良的日冕仪观测台站。
看太阳,还需要挑选地方?
当然!
日冕光从太阳传输至地面日冕仪的入射窗口,其实可以分为两个过程:第一阶段是日冕光经行星际空间传输至地球大气上界;第二阶段是经地球大气,从地球大气上界传输至地面日冕仪窗口。
在第一阶段,日冕光不受地球大气扰动影响,可以认为很稳定。在第二阶段,日冕光经大气上界传输至地面日冕仪窗口,主要受到大气散射和气溶胶吸收的影响。即使在一些空气非常稀薄的高山上,大气散射的量级也能达到10-5-10-6B 。
所以,在地面上开展日冕仪观测,必须进行日冕仪台站选址工作。
其实,早在1930年,世界上第一台日冕仪就诞生了。
法国人B. Lyot发明了内掩式日冕仪,在海拔2870米大雪之后的比利牛斯 山上,成功观测到日冕,这是人类向“人造日全食”迈出的“里程碑”式一步。
自此之后,随着观测目标和加工工艺的不断改进,瑞士、德国、美国、俄罗斯等国家先后将日冕仪作为地面常规设备,开展了日冕连续观测。日冕仪的探测视场、时间/空间分辨率、杂散光抑制水平不断提高,并由地面观测步入了自主空间探测。
目前,日冕仪已经成为太阳物理和空间天气科学研究和监测的必不可少仪器。
那么,我国的日冕仪研究状况如何呢?
与发达国家相比,我国日冕仪研制起步较晚,最早的日冕仪研制始于南京。1959年6月由南京大学组织在甘肃祁连山朱龙关地区开展日冕仪测试,但受到了当时仪器简陋和观测环境的限制,未能成功拍摄到日冕图像。
几十年后,我们中国西部太阳选址队伍携带科学设备先后考察了新疆、西藏、宁夏、青海、四川和云南等省市的60多处址点。通过科学分析,结合交通、气象气候要素、地理地质条件、 社会 和人口发展等方面的统计数据,获得了数个较理想的日冕仪台站候选点。
如今,在国际合作的基础上, 我们于2013年在海拔3200米的云南天文台丽江天文观测站完成了日冕仪的建设。 这不仅开启了我国非日全食时的日冕观测,而且证明了我国西部高海拔地区的确存在符合地基日冕仪观测的优良址点,为我国日冕仪的研制,夯实了基础。
经过对日冕仪不断升级改造,并与国内重点大学、研究所开展交流合作, 2017年,团队又完成了丽江日冕仪高海拔实验基地的建设。同时,团队还集中了优势力量开展与山东大学(威海)、中国科学院长春光学精密机械与物理研究所、中国 科技 大学、国家天文台、紫金山天文台等单位的合作。
功夫不负有心人,2018年10月22日,我国自主研制的日冕仪样机在丽江日冕仪高海拔试验基地成功获得了绿线日冕图像!
这次试验的成功是我国在日冕仪关键技术上的 历史 性突破,标志着我国已经步入国际日冕仪研制梯队。
虽然取得了这样的突破,但科学家们心里都非常清楚,我们和国际第一梯队还有不小的距离。因此,在成功获得日冕图像后,科学家们马上投入了新的研究。
这一次,他们将目光投向了太阳K冕亮度的研究。
K冕 由日冕中自由电子散射太阳光球层的直射光而形成,K冕的亮度能够反映日冕中自由电子和离子密度的分布。太阳爆发活动中的日冕物质抛射,是日冕物质在较短时间内被大规模抛出太阳表面的现象,是太阳大气中最剧烈的爆发活动,也是来自太阳最大规模和最具破坏性的爆炸。日冕物质抛射携带了大量日冕等离子体,其密度的动态变化与K冕形成机制极为相关,K冕的观测具有重要科学研究价值。
K冕观测对日冕仪杂散光抑制水平和日冕仪台站的观测条件要求非常高,两者缺一不可。因此,能够观测到K冕,是日冕仪研究达到高水准的一种标志。
为探究太阳K冕亮度,分析日冕自由电子和离子的密度扰动,就需要研制白光日冕仪。 依托云南天文台承担的中科院先导A“鸿鹄专项”子课题“日冕仪临近空间搭载实验”实验任务,研究人员在海拔近4800米的四川甘孜州稻城县不断进行着试验与改进。
终于,2021年,由我国自主研发的白光日冕仪在稻城县的无名山成功获得日冕白光像!
白光日 冕仪的成功试验,为K冕研究提供了观测数据,在我国尚属首次,标志着我国的日冕仪研制技术又迈上 了新的台阶!
“操千曲而后晓声,观千剑而后识器”, 科技 创新没有捷径,求真务实才是进步的阶梯。
太阳物理领域的经典问题“为什么日冕那么热”,是《科学》评选出的当代天文学的八大未解之谜之一。但有关“日冕加热”的理论解释存在诸多争议,关键是没有强有力的观测证据。如果开展日冕磁场直接测量,或者发射足够接近太 阳的探测器,在关键技术和观测发方法上获得突破,将有望获取“日冕加热”问题的直接观测证据。而日冕仪在这些关键问题研究中都起着重要作用。
令人欣喜的是,我国的日冕仪研制队伍正在逐渐壮大,脚踏实地、行稳致远。在日冕仪研究领域,先后开展了地基日冕仪研制计划、SST空间太阳望远镜计划、“夸父”探测计划和太阳极轨射电望远镜计划、“子午工程二期”地基光谱成像日冕仪、先进太阳天文台ASO-S搭载的日冕仪等等。这些未来的“人造日全食”,或许会让日全食变得不再“稀有”。
我们相信,从稻城无名山走出的奇迹还将继续,有科研人员的付出和创造,我们与那个炽热的答案之间的距离也将越来越近,期待着下一次的靠近!
参考文献:
日全食是怎么发现的
所谓日食,是指月球运行到太阳和地球之间时,在地球表面上月影区域里的人所见到的太阳被月亮遮挡的现象。在历史上,因为对日食的形成原因不清楚,日食曾形象地被称为天狗吃太阳。日食的前半段过程,从初亏至食甚,看起来确实很像是太阳逐渐被吞食。不过,日食的后半段过程,并不表现为被吞掉的太阳又被吐出来,而是最先被吞掉的部分被最先吐出来。所以日食过程更像是用块圆板从太阳一侧移到另一侧的遮挡过程。日食时,地面上位于月影中心区的人,看到的是日全食或日环食,位于月影半影区的人,看到的则是日偏食。壮观的日食在科学研究上也意义重大,深受人们的追捧。而人造日食的主要目的就是造出可供观测的日全食,协助我们了解太阳的外层大气——日冕,这个产生巨大环境扰动的温床。
我们容易想到,如果月亮绕地球运行的轨道和地球绕太阳的轨道在同一个平面里,那么月亮每绕行地球一圈,就会产生一次日食,也就是说,每个月会有一次日食。然而,月亮绕地球的轨道和地球绕太阳运行的轨道并不是在同一个平面里,两个轨道平面之间夹着一个小的角,所以从地球上看,太阳的位置越接近上述两个轨道的交点,才越可能发生全食现象。实际上,只要太阳的位置到这两个轨道的交点距离小于一定的值,就会有日食发生。据统计,在地球上的同一地点,平均三百多年才有一次日全食,每次日全食的时间也只有几分钟。
1968年,中国科学院组织天文、地球物理和气象界人员对新疆地区9月22日发生的日全食作了考察,本人是考察队成员之一。这是20世纪50年代以来我国的首次规模较大的日全食综合考察。偏食开始后,晴朗天空的亮度渐渐下降,草原和山丘上的牛羊马匹依旧安详地低头吃着秋草。全食开始前的一瞬间,一股猛烈的冷风突然刮起,席卷了大地。天空骤然变暗,正在食草的牲畜狂奔乱跑,大声嘶鸣,刹那间天地一片漆黑……其情其景何止神奇,简直令人震撼,领悟了一次大自然的威力。那次日全食在新疆昭苏县只持续了约19秒。
日全食的现象使我们感兴趣的原因次数少,持续时间短,更重要的是,日全食向我们提供了一个难得的认识太阳的机会,了解太阳对我们生存环境如何影响的机会。科学技术的发展,为我们观测日全食的望远镜提供了诸多可以选择的附属设备,如光谱仪、滤光器、偏振器等,观测结果大大丰富了我们的太阳知识。日全食观测研究告诉我们,在日常的非日食期间看到的发着强光的太阳只代表了太阳大气的底层,称为光球层。在底层之上还有两个层次,其中一层是厚度几千公里的中间层,称为色球层,它的物质密度远低于光球层,但温度高于光球层;另一层是太阳大气的高层,称为日冕层,它的密度更小,但温度极高,可达百万度。这三个物理性质截然不同的层次,共同组成了太阳大气。我们在日全食时拍摄到的,存在于太阳周围的云状物,有时可高达百万公里,这就是日冕,是高层太阳大气。许多神秘有趣的现象就出现在日冕之中。比如1869年一次日全食观测中发现,日冕所发射谱中有一条陌生的波长为530.3nm绿色谱线,起初认为是一种新的气体,称之为?辐射,后来认证出它是13次电离的铁离子发出的谱线。这样的一些发射谱线的认证,帮助我们认识了日冕是高温、极稀薄的和高电离的物质,它辐射的白光乃是其自由电子对光球辐射的散射。
日全食观测发现,日冕的总体形状与太阳活动的水平有关,形状变化的周期与太阳黑子的周期变化相一致。从而可能影响地球的空间环境。更有启发意义的是,日全食期间有时会观测到日冕中不同尺度的瞬时活动或变化。
人造日全食——日冕仪的发明与应用
日全食的观测还使人们认识到,极稀薄的日冕气体导致了日冕的极弱的辐射。即使在日冕下部亮度较大的部分,其亮度也只有太阳光球表面中部区域平均亮度的百万分之一。非日全食期间地球大气的散射光,再加上望远镜镜筒内的散射光,必然使亮度很低的日冕辐射被完全淹没而无法看到。
这样,不管是由于好奇心和求知欲驱使,或者实用所需,要想知道日冕的奥秘,除了充分利用日全食提供的机会之外,还必须设法解决在非日全食期间对日冕进行观测的问题。开发和利用日冕这个知识源的思路之一,是使太阳望远镜长时间的飞行在阳光照射月球形成的月影里,如同总是在地面日食带一样。上世纪60年代,美国曾使用飞机作追随月影的飞行,以便加长日全食的观测时间,不过从投资、技术设备等方面考虑非永久之计。另一种设想,就是人工造成日食状态,让望远镜的接收系统能够感到和记录日冕的辐射。因此,首先必须设法模仿日食过程,遮挡住太阳光球的强光,还需大量减少地球大气的散射光,从而使日冕辐射由被淹没状态突显出来。法国天文学家里奥成功地实现了这种设想。
1931年里奥发明了日冕仪,开启了人造日食观测与日全食观测并行的时代。这种日冕仪的原理是:(1)在望远镜镜筒里的物镜焦点处放置一块圆版,只把太阳光球射来的光遮挡住,并且把挡住的光从镜筒上的开口反射出去;(2)用光栏和遮板等将望远镜镜片和光栏等产生的衍射光与杂散光截挡住。为了减少地球大气的散射光,这种日冕仪需要安装在海拔2千米以上的高山上。因其遮挡光的遮板是置于望远镜的筒内,故称内遮挡式日冕仪。20世纪,里奥式日冕仪在法国、日本、前苏联及美国夏威夷和新墨西哥州等地的高山上纷纷投入观测。每个晴天,使用这种仪器可以长时间的观测日冕。为了不同的研究目的,在望远镜的终端或光路中可装上不同的附加设备。实际应用表明,里奥日冕仪还不能完全避免散射光的影响,应用这种日冕仪最多只能观测到距日心1.3倍太阳半径处的日冕。各国的高山日冕仪已投入使用多年,做科学研究性和常规数据性工作。观测的设备和数据资料向世界开放。
再辟新径相辅而行
诚然,用日冕仪可以长时间的监测日冕。然后,正如前面提及的,这种观测与日全食观测类似,只限于观测日面边缘以外的日冕,观测到的是日冕边缘外的日冕在天空背景上的投影。除此之外,如果能够观测太阳圆面上的日冕必会大大提高我们认识日冕的能力。例如,可以把日面上与日面边缘外的日冕观测结果综合起来,构造出日冕结构的三维形态,甚至为研究日冕中的物理机制创造条件。这肯定是日冕观测多年的期盼。
以光球为背景观测日冕,正如在背景强度是信号强度的百万倍的情况下,来探测日冕信号,如果不改变思路,将会面临很难克服的困难。这就迫使新的日冕观测仪器的设计必须另辟新路,单靠散射光强度的减小是无济于事的。这个新的思路就是拍摄太阳的单色像。这条路不属于人造日食的主题,但它与日全食观测、人造日食观测(高山日冕仪观测)是相互补充的三个重要手段,值得一提。
日冕具有百万度的高温,光球的温度只有6000度。这种差距为日面上的日冕观测提供了物理依据,那就是在X射线波段、远紫外波段和射电波段(即无线电波段)日冕的辐射强度大大高于太阳光球的辐射强度。如果在这几个波段对太阳拍摄单色像,应该可以清楚地显示出日面上日冕的结构、形态,而无光球的干扰。考虑到地球大气对紫外和X射线的吸收,这两个波段的太阳单色像需要在空间借助火箭或人造卫星来获取。
射电波段的太阳单色像可以在地面上取得,所用的设备最典型的是,20世纪60年代到80年代在米波单色像观测方面成果最多的澳大利亚米波日像仪。上个世纪40年代,美国用火箭探测太阳的X射线辐射。1964年用火箭拍到了日冕中低密度的区域(称为冕洞)。1967年,美国轨道太阳天文台系列探测卫星之一的OSO-4号首次成功拍到太阳的极紫外单色像。
在天上作人造日食观测
在太空作人造日食观测,简言之就是把高山日冕仪送上天,观测日冕。
科学技术不断发展,每前进一步就会有新的问题或新的知识点出现,成为下一项研究工作的动力。这一次轮到的是日冕物质抛射的发现及其推动的相关研究,其中主项之一是用高灵敏大视场的日冕仪作白光观测。
模仿日食发明仪器的是谁的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于我设计的关于日食的模拟实验、模仿日食发明仪器的是谁的信息别忘了在本站进行查找喔。
版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。
评论